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Abstract We propose a mobile food recognition system the purposes of which are esti-
mating calorie and nutritious of foods and recording a user’s eating habits. Since we adopt
image recognition methods which are suitable for mobile devices and all the processes on
image recognition is performed on a smartphone, the system does not need to send images
to a server and runs on an ordinary smartphone in a real-time way.

To recognize food items, a user draws bounding boxes by touching the screen first, and
then the system starts food item recognition within the indicated bounding boxes. To recog-
nize them more accurately, we segment each food item region by GrubCut, extract image
features and finally classify it into one of the one hundred food categories with a linear
SVM. As image features, we adopt two kinds of features: one is the combination of the
standard bag-of-features and color histograms with χ2 kernel feature maps, and the other
is a HOG patch descriptor and a color patch descriptor with the state-of-the-art Fisher Vec-
tor representation. In addition, the system estimates the direction of food regions where the
higher SVM output score is expected to be obtained, and it shows the estimated direction in
an arrow on the screen in order to ask a user to move a smartphone camera. This recogni-
tion process is performed repeatedly and continuously. We implemented this system as an
Android smartphone application so as to use multiple CPU cores effectively for real-time
recognition.

In the experiments, we have achieved the 79.2% classification rate for the top 5 category
candidates for a 100-category food dataset with the ground-truth bounding boxes when we
used HOG and color patches with the Fisher Vector coding as image features. In addition, we
obtained positive evaluation by a user study compared to the food recording system without
object recognition.
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1 Introduction

In recent years, food habit recording services for smartphones such as iPhone and Android
phones have become popular. They can awake users’ food habit problems such as bad food
balance and unhealthy food trend, which is useful for disease prevention and diet. However,
most of such services require selecting eaten food items from hierarchical menus by hand,
which is too time-consuming and troublesome for most of the people to continue using such
services for a long period.

Due to recent rapid progress of smartphones, they have obtained enough computational
power for real-time image recognition. Currently, a quad-core CPU is common as a smart-
phone’s CPU, which is almost equivalent to a PC’s CPU released several years ago in terms
of performance. Old-style mobile systems with image recognition need to send images to
high-performance servers, which must makes communication delay, requires communica-
tion costs, and the availability of which depends on network conditions. In addition, in
proportion to increase number of users, more computational resources of servers is also
required, which makes it difficult to recognize objects in a real-time way.

On the other hand, image recognition on the client side, that is, on a smartphone is much
more promising in terms of availability, communication cost, delay, and server costs. It
needs no wireless connection and no commutation delay. Then, by taking advantage of rich
computational power of recent smartphones as well as recent advanced object recognition
techniques, in this paper, we propose a real-time food recognition system which runs on a
common smartphone.

To do that, we adopt two kinds of image recognition methods: one is the combination
of the standard bag-of-features(BoF) and color histograms with χ2 kernel feature maps, and
the other is a HOG patch descriptor and a color patch descriptor with the state-of-the-art
Fisher Vector representation.

In the first method, we adopt a bag-of-feature representation with SURF local features
and a standard color histogram as image features, and we use a linear SVM and a fast χ2

kernel based on kernel feature maps [Vedaldi and Zisserman(2012)] as an image classifier.
In the second method, we adopt the more sophisticate method than the first one. Some ef-

fective image representations have been proposed recently, which can boost recognition per-
formance in case of using a linear SVM. Especially, Fisher Vector [Perronnin and Dance(2007),
Perronnin et al.(2010)] is known as a high performance method among the recent image
representations. It is suitable for a linear classifier, and was turned out that it can improved
recognition accuracy more than popular combination of bag-of-features (BoF) and a non-
linear SVM. Moreover, while BoF needs larger dictionary to improve recognition accuracy,
larger dictionary brings increase of computational cost for searching nearest visual words.
On the other hand, Fisher Vector is able to achieve high recognition accuracy with even small
dictionary, and low computational complexity. This is an advantage for mobile devices.

Thus adopting Fisher Vector as encoding method is better in terms of recognition ac-
curacy and processing time for a mobile object recognition. However, a system on a smart-
phone does not exist so far that carries out rapid and high precision image recognition with
Fisher Vector. Then we propose a recognition method for a smartphone which is rapid and
accurate by making good use of computational resource of the smartphone with Fisher Vec-
tor.

In the experiments, we have achieved 79.2% classification rate within the top five can-
didates for a 100-category food dataset with ground-truth bounding boxes using the second
method. This results outperformed the existing food recognition method running on the
server-side regarding classification accuracy on the same 100 food categories. The process-



Real-time Food Recognition System on a Smartphone 3

Selected Food 

Recognition Result Confidence Food Image 

Input Volume 

Suggest Direction 

Fig. 1 The screen-shot of the main screen of the proposed system.

ing time by the second method for 100 kinds of food image recognition takes only 0.065
second.

Here, we explain the implemented system briefly. Figure 1 shows the screen-shot of
the proposed system which runs as an Android smartphone application. First a user point a
smartphone camera to foods, draws a bounding box (represented in the yellow rectangular
in the figure) by dragging on the screen, and then food image recognition is activated for
the given bounding box. The top five candidates for the yellow bounding box are shown
on the left side of the screen. If a user touches one of the candidate items, the food cate-
gory name and the photo are recorded as a daily food record in the system. In addition, the
proposed system has functions on automatic adjustment of bounding boxes based on the
segmentation result by GrubCut [Rother et al.(2004)], and estimation of the direction of the
expected food regions based on Efficient Sub-window Search (ESS) [Lampert et al.(2008)].
Since this recognition process is performed repeatedly a user can search for good position
of a smartphone camera to recognize foods accurately by moving it continuously without
pushing a camera shutter button.

To summarize our contribution in this paper, it consists of five folds: (1) implementing
an interactive and real-time food recognition and recording system running on a consumer
smartphone, (2) using a liner SVM with a fast χ2 kernel for fast and accurate food recog-
nition as the first method, (3) using a Fisher Vector coding with a HOG and color patches
as the second method, (4) adjustment of the given bounding box, and (5) estimation of the
direction of the expected food region automatically.

The rest of this paper is organized as follows: Section 2 describes related work. In Sec-
tion 3, we explain the overview of the proposed system. In Section 4, we explain the detailed
method for food recognition. In Section 5, we describe the detail of implementation of the
proposed system as a smartphone application. In Section 6 describes the experimental results
and user study, and in Section 7 we conclude this paper.
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2 Related Work

2.1 Food Recognition

Food recognition is difficult task, since appearances of food items are various even within
the same category. This is a kind of fine-grained image categorization problem. As food
recognition, Yang et al. [Yang et al.(2010)] proposed pairwise local features which exploit
positional relation of eight basic food ingredients. Matsuda et al. [Matsuda et al.(2012)]
proposed a method for recognition multiple-food images which first detected food regions
by several detectors including circle detector, JSEG [Deng and Manjunath(2001)] and De-
formable Part Model(DPM) [Felzenszwalb et al.(2010)], next recognized food categories
with the extracted color, texture, gradient, and SIFT using multiple kernel learning (MKL).

As a food recording system with food recognition, Web application FoodLog [Kitamura et al.(2008),
Kitamura et al.(2009)] estimates food balance. It divides the food image into 300 blocks,
from each blocks extracts color and DCT coefficients, next classifies to five groups such as
staple, main dish, side dish, fruit, and non-food.

The TADA dietary assessment system [Mariappan et al.(2009)] has food identification
and quantity estimation, although it has some restriction that food must be put on white
dishes and food photos must be taken with a checkerboard to food quantity estimation.
Recently, the same research group proposed a method to estimate volume of foods which
was based on a 3D template matching [Chae et al.(2011),He et al.(2013)].

In all the above-mentioned systems image recognition processes perform on servers,
which prevents systems from being interactive due to communication delays. On the other
hand, our system can recognize food items on a client side in a real-time way, which re-
quires no communication to outside computational resources and enables user to use it
interactively. Note that our current system recognize only 100 food categories, and it re-
quires user’s assistances to estimate food volumes by touching a slider on the system screen.
However, user’s assistances are very easy, since our system is an interactive system on a
smartphone which has a touching screen.

2.2 Mobile Device and Computer Vision

With the spread of smartphones, some mobile applications exploiting computer vision tech-
nique have been proposed. Google Goggles 1 is one of the most well-known mobile image
recognition applications which recognize specific object such as famous landmarks, prod-
uct logos, famous art and so on in photos taken by users, and return the names and some
information on the recognized objects to users. However, recognition targets are limited to
specific objects the appearance of which stays unchanged, which is different from this paper
the target of which is generic objects.

Kumar et al. [Kumar et al.(2012)] proposed recognize 184 species application “Leaf-
snap”. For a leaf image on the solid light-colored background they segment and extract
curvature-based shape features. Maruyama et al. [Maruyama et al.(2012)] proposed a mo-
bile recipe recommendation system which extracted color feature, recognized 30 kinds of
food ingredients and recommended food recipes based on the recognized ingredients on a
mobile device. In the above-mentioned mobile vision systems, generic object recognition

1 http://www.google.com/mobile/goggles/
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for leaves and food ingredients was performed, while we tackle category-level object recog-
nition on foods on a mobile device.

As an interactive mobile vision system, Yu et al. [Yu et al.(2011)] proposed Active
Query Sensing (AQS) the objective of which is localization of the current position by match-
ing of street-view photos. When the system fails in location search, it suggests the best view-
ing direction for the next reference photo to a user based on the pre-computed saliency on
each location. Our system is also built as an interactive system which detects object regions
based on the bounding boxes a user draws and suggests the direction of food regions where
the higher evaluation output score is expected.

3 System Overview

The final objective of the proposed system is to support users to record daily foods and check
their food eating habits. To do that easily, we built-in food image recognition technique on
the proposed system. In this paper, we mainly describe a food image recognition part of the
proposed system.

Processing flow of typical usage of the proposed system is as follows (See Figure 2 as
well):

1. A user points a smartphone camera toward food items before eating them. The system
is continuously acquiring frame images from the camera device in the background.

2. A user draws bounding boxes over food items on the screen. The bounding boxes will
be automatically adjusted to the food regions. More than two bounding boxes can be
drawn at the same time. .

3. Food recognition is carried out for each of the regions within the bounding boxes. At the
same time, the direction of the region having the higher evaluation score is estimated for
each bounding box.

4. As results of food recognition and direction estimation, the top five food item candidates
and the direction arrows are shown on the screen.

5. A user selects food items from the food candidate list by touching on the screen, if found.
Before selecting food items, a user can indicate relative rough volume of selected food
item by the slider on the right bottom on the screen. If not, user moves a smartphone
slightly and go back to 3.

6. The calorie and nutrition of each of the recognized food items are shown on the screen.

In addition, a user can see his/her own meal record and its detail including calories and
proteins of each food items on the screen as shown in Figure 3(a). Meal records can be sent
to the server, and a user can see them on the Web (Figure 3(b)).

4 Methods

In this section, we explain the following three processing steps:

1. Adjustment of bounding boxes.
2. Recognition of food items within the given bounding boxes.
3. Estimation of the direction of the possible food region.

Regarding recognition of food items, we propose two kinds of the methods. In this
section, we will explain both of them.
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Fig. 2 System process flow
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Fig. 3 Meal records.

4.1 Bounding Box Adjustment

Before starting to recognize food items for the frame images taken by a smartphone camera,
at first the system requires that a user draws bounding boxes which bounds food items on
the screen by dragging along the diagonal lines of the boxes.

First, a user draws bounding boxes roughly on the screen by dragging. The bounding
boxes a user draws are not always accurate and sometimes they are too large for actual food
regions. Therefore, we apply well-known graph-cut-based segmentation algorithm Grab-
Cut [Rother et al.(2004)], and then modify the bounding boxes so as to fit them to food
regions segmented by GrabCut. GrabCut needs initial foreground and background regions
as seeds. Here, we provide GrubCut the regions within bounding boxes as foreground and
the areas out of the doubly-extended boxes of the original bounding boxes as background.
Since the computational cost of GrabCut is relatively high in the real-time recognition sys-
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tem, the bounding box adjustment is performed only once after the original bounding box
was drawn.

4.2 Food Item Recognition

Food recognition is performed for each of the window images within the given bounding
boxes. Firstly, image features are extracted from each window, secondly feature vectors are
built based on the pre-computed codebook, and finally we evaluate the feature vectors with
the trained linear SVMs on 100 food categories. The top five candidates which have the top
five SVM scores over 100 categories are shown on the screen as food item candidates for
the given bounding boxes.

As image features, we adopt two kinds of features: one is the combination of the stan-
dard bag-of-features and color histograms with χ2 kernel feature maps, and the other is a
HOG patch descriptor and a color patch descriptor with the state-of-the-art Fisher Vector
representation. We explain both of the methods and compare them in Section 6.

4.2.1 Image Feature: Bag-of-features and Color Histogram

As the first image features, we adopt bag-of-features [Csurka et al.(2004)] and color his-
tograms both of which are standard image features for generic object recognition. It is shown
that fusion of many kinds of image features is effective for food recognition [Matsuda et al.(2012)].
Since we aims for implementing a mobile recognition system which can run in the real-
time way, image features to be extracted should be minimum requisites. Then we eval-
uated and compared performance and computational costs of various kinds of common
standard image features including global and local features such as color histogram, color
moment, color auto correlogram, Gabor texture feature, HoG (Histogram of Oriented Gradi-
ent) [Dalal and Triggs(2005)], Pyramid HoG, and Bag-of-features with SURF features [Bay et al.(2008)].
Finally we chose the combination of color histogram and Bag-of-features with SURF. To
save computational cost, if the longer side of a bounding box is more than 200, the image
extracted from the bounding box is resized so that the longer side becomes 200 preserving
its aspect ratio.

Color Histogram: We divide a window image into 3× 3 blocks, and extract a 64-bin RGB,
color histogram from each block. Totally, we extract a 576-dim color histogram. Note that
we examined HSV and La*b* color histograms as well, and RGB color histogram achieved
the best among them.

Bag-of-fetures with SURF: As local features, we use dense-sampled SURF features. SURF [Bay et al.(2008)]
is an invariant 64-dim local descriptor for scale, orientation and illumination change. We
sample points by dense sampling in scale 12 and 16 with every 8 pixel with the window. To
convert bag-of-features vectors, we prepared a codebook where the number of codeword was
500 by k-means clustering in advance. We apply soft assignment [Philbin et al.(2008)] by
3 nearest-neighbor assigned reciprocal number of Euclid distance to the codeword, also we
use fast approximated-nearest-neighbor search based kd-tree to search the codebook for the
corresponding codeword for each sampled point. Finally, we create a 500-dim bag-of-SURF
vector.
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Feature Embedding: As a classifier, we use a linear SVM because of its efficiency on com-
putation and memory. Although a linear SVM is fast and can save memory, classification
accuracy is not as good as a non-linear kernel SVM such as a SVM with χ2-RBF kernel.
To compensate weakness of a liner SVM, we use explicit embedding technique. In this
work, we adopt kernel feature maps. Vedaldi et al. [Vedaldi and Zisserman(2012)] proposed
homogeneous kernel maps for χ2, intersection, Jansen-Shanon’s and Hellinger’s kernels,
which are represented in the closed-form expression. We choose mapping for χ2 kernel and
we set a parameter so that the dimension of mapped feature vectors are 3 times as many as
the dimension of original feature vectors as shown in the following equation:

ϕ(x) =
√

x

 0.8
0.6 cos(0.6 log x)
0.6 sin(0.6 log x)

 (1)

This mapping can be applied for L1-normalized histogram [Vedaldi and Zisserman(2012)].
Then we apply this to L1-normalized color histograms and Bag-of-SURF vectors. Finally
we obtained a 1728-dim vector as a color feature, and a 1500-dim vector as a BoF vectors.

4.2.2 Image Feature: HOG and Color Patch with Fisher Vector

As the second image features, we adopt a HOG patch and a Color patch as local descriptor,
and Fisher Vector as representation of local descriptors.

HOG Patch: Histogram of Oriented Gradients(HOG) was proposed by N.Dalal et al.[Dalal and Triggs(2005)].
It is similar to SIFT is terms of how to describe local patterns which is based on gradient his-
togram. The characteristics of HOG is no invariant for scale and rotation, which is different
from the standard local descriptors such as SIFT [Lowe(2004)] and SURF [Bay et al.(2008)].
Since HOG description is very simple, it is able to describe much faster than the common lo-
cal descriptors such as SIFT and SURF. This is important characteristic to carry out real-time
recognition on a smartphone. In addition, it is able to extract local feature more densely to
compensate no invariance on scale change and rotation. As a result, it improves recognition
accuracy.

We extract HOG features as local features. We divide a local patch into 2 × 2 blocks
(totally four blocks), and extract gradient histogram regarding eight orientations from each
block. Totally, we extract 32-dim HOG Patch features. Then the 32-dim HOG Patch is L2
normalized to an L2 unit length. Note that we did not adopt HOG-specific normalization by
sliding fusion. The HOG used here is a simpler-version of the original HOG. After extracting
32-dim HOG patch, PCA is applied each HOG patch to reduce dimensions from 32 to 24.

Color Patch: We use mean and variance of RGB value of pixels within a local patch as
a Color Patch feature. We divide a local patch into 2 × 2 blocks, and extract mean and
variance of RGB value of each pixel within each block. Totally, we extract 24-dim Color
Patch features. PCA is applied without dimension reduction. The dimension of a Color Patch
feature are kept to 24-dim.
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Fisher Vector: Recently, Fisher Vector [Perronnin and Dance(2007),Perronnin et al.(2010)]
Recently, Fisher Vector [Perronnin and Dance(2007),Perronnin et al.(2010)] becomes

known as a high performance method to represent a set of local features. It can decrease
quantization error than bag-of-features [Csurka et al.(2004)] by using of a high order statis-
tic. It was turned out that it can improved recognition accuracy more than bag-of-features
(BoF) and other recent representations such as Locality-constrained Linear Coding (LLC) [Wang et al.(2010)][Chatfield et al.(2011)],
and most of the higher rank teams in the large-scale visual recognition challenge (LSVRC)
used Fisher Vector [Jia et al.(2012)].

Moreover, while BoF needs larger dictionary to improve recognition accuracy, larger
dictionary brings increase of computational cost for searching nearest visual words. On
the other hand, Fisher Vector is able to achieve high recognition accuracy with even small
dictionary, and low computational complexity. This is an advantage for mobile devices.

According to [Perronnin et al.(2010)], we encode local descriptors into Fisher Vector.
We choice probability density functions (pdf) as Gaussian mixture model (GMM). Then pdf
is given as follows.

p(x|θ) =
K∑
i=1

πiN (x|µi, Σi) (2)

where x is a local descriptor, K is number of component of Gaussian, θ = {πi, µi, Σi, i =
1, ...,K} is a parameter of GMM. πi is the mixing coefficient, µi is a mean vector and Σi

is a covariance matrix. At this point, we assume that the covariance matrix is diagonal and
diagonal elements are presented variance vector σ2.

The probability of xt is belong component i (estimated posterior probability) is given
as follows.

γt(i) =
πiN (xt|µi, Σi)∑N

j=1 πjN (xt|µj , Σj)
(3)

Then the gradient with respect to the mean and variance is defined as follows,

GX
µ,i =

1

T
√
πi

T∑
t=1

γt(i)

(
xt − µi

σi

)
(4)

GX
σ,i =

1

T
√
2πi

T∑
t=1

γt(i)

[
(xt − µi)

2

σ2
i

− 1

]
(5)

Finally, gradient GX
µ,i and GX

σ,i are calculated for all the Gaussian. Fisher Vector GX
θ is

their concatenation. Therefore Fisher Vector is 2KD-dimensional.
In this paper, the number of component of Gaussian is 32 and local descriptors re-

duced to 24 dimensions by PCA. Thus each feature vector is 1536-dimensional. To im-
prove recognition accuracy, we apply power normalization (α = 0.5) and L2 normaliza-
tion [Perronnin et al.(2010)].

4.2.3 Classification

As a classifier, we use a linear kernel SVM, and we adopt the one-vs-rest strategy for multi-
class classification. In the experiment, since we prepared 100 food categories, we trained
100 linear SVM classifiers.
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Linear kernel is defined as the inner product of two vectors. In advance, we computed
the inner product of a support vector and the weight of the corresponding support vector,
then Linear SVM can be written as follows:

f(x) =

M∑
i=1

yiαiK(x,xi) + b =

M∑
i=1

yiαi⟨x,xi⟩+ b

= ⟨
M∑
i=1

yiαixi,x⟩+ b = ⟨w,x⟩+ b (6)

where x is an input vector, f(x) is an output SVM score, xi is support vector, yi ∈
{+1,−1} is a class label, αi is a weight of the corresponding support vector, b is a bias
vector, and M is the number of support vector. By this transformation, we can save memory
to store support vectors as well as calculation of kernels. Therefore, when N is the dimen-
sion of feature vector, calculation of a SVM score requires O(N) operations and O(N)
memory space. We train SVMs with LIBLINEAR [Fan et al.(2008)] in off-line.

For both cases of the first and the second image features, we combine the output values
of both linear SVMs for gradient-based features and color-based features in the late fusion
manner. The weight to combine two SVM output values is estimated by cross-validation in
the experiments.

4.3 Estimation of the more reliable direction

In case that no categories with high SVM scores are obtained, camera position and viewing
direction should be changed slightly to obtain more reliable SVM evaluation scores. To
encourage a user to move a smartphone camera, the proposed system has a function to
estimate the direction to get the more reliable SVM score and show the direction as an
arrow on the screen as shown in Figure 1.

To estimate the direction of the food regions with more reliable SVM score, we adopt an
effective window search method for object detection, Efficient Sub-window Search (ESS) [Lampert et al.(2008)],
which can be directly applied for a combination of a liner SVM and bag-of-features. Note
that estimation of the more reliable direction can be carried out for the first type of the image
feature, because ESS assumes image features is represented by bag-of-features.

The weighting factor w of an input vector of the SVM classifier represented in Equa-
tion 6 can be decomposed into a vector w+ including positive elements and a vector w−

including negative elements.

w = w+ +w− (7)

Therefore, an SVM output score for one rectangular region can be calculated in O(1) opera-
tion by making use of w+ and w− integral images according to the ESS method [Lampert et al.(2008)].
In case of the above-mentioned soft assignments to codewords, the output score can be cal-
culated by a product of w and assigned values to codewords. We search for the window
which achieves the maximum SVM score by Efficient Sliding Windows search so as to keep
more than 50% area being overlapped with the original window. Finally the relative direc-
tion to the window with the maximum score from the current window are shown as an arrow
on the screen (See Figure 1).
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5 Implementation on a Smartphone

We implemented two version of the systems as Android applications for an Android smart-
phone which has a quad-core CPU. The first version uses bag-of-features and color his-
togram, while the second version uses a HOG and Color patch with Fisher Vector. We im-
plemented both systems as multi-threaded systems for using multiple CPU cores effectively.

In both systems, we first apply GrabCut to adjust the size of the given bounding box after
a bounding box is drawn. Because the computational cost of GrabCut is relatively high,
bounding box adjustment is carried out once for one bounding box. After the adjustment
was finished, feature extraction begins. The ways to extract features are different for both
systems.

For the first version, high-cost SURF descriptor extraction, assignment to codewords,
evaluation of 50 kinds of fast χ2 linear SVMs and direction estimation are carried out over
four cores in parallel, while low-cost color histogram extraction is performed on a single
core. Figure 4 shows the flow of the processing steps and usage of four CPU cores in the
first version system.

For the second system, we parallelized extraction for HOG Patch and Color Patch fea-
ture. Both extractions are carried out over two cores in parallel. Extract descriptor, reduce
to dimension by PCA, encoding into Fisher Vector, power normalization, L2 normalization
and classify with SVMs are carried out over 2 cores in parallel for each feature, totally
over 4 cores in parallel. Figure 5 shows the flow of the processing steps and usage of four
CPU cores in the second version system. Note that estimation of the direction of foods is
not implemented in the second version system, since the ESS method which the method on
direction estimation is based on assumes that the feature representation is bag-of-features.

For the second system, we devised speeding-up of computation by pre-computation.
The gradient of Fisher Vector with respect to the mean Eq.(4) is deformation as follows to
decrease the number of operation. The number of local descriptors T is much bigger than
the number of GMM component K and the dimension of local descriptor D, and calculate
Eq.(4) for each component, so effectively.

GX
µ,i =

1√
πiσi

1

T

T∑
t=1

γt(i)(xt − µi) (8)

Moreover in advance, we computed the term of calculate posterior probability by GMM and
the gradient with respect to the mean and sigma in off-line, and we create the lookup table
for acceleration (using for calculate posterior probability log πi − 0.5 × log |Σi|, 1/

√
2πi

and 1/σ2 of Eq.(5) and 1/
√
πiσi of Eq.(8)).

We trained SVMs in off-line. And all the parameter values using recognition steps are
loaded on main memory (eigenvalue and eigenvector for PCA, created lookup table, mean of
GMM, weight vectors of SVMs). Although all the values can be stored on main memory in
advance, Fisher Vector is able to bring better recognition result with even smaller dictionary
than that of BoF. We also set the dimension of feature vectors smaller reduced by PCA. As
a result, memory space required for Fisher Vector is smaller than the space for codebook for
conventional BoF, and in respect of memory Fisher Vector is also superior to BoF.

Regarding memory space, the first-version system adopts 1500-dim SURF-BoF and
1728-dim color histogram, while the second-version system adopts 1536-dim HOG Patch-
FV and 1536-dim Color Patch-FV. The feature vector of the second one is more compact but
more dense. And then many values are loaded on memory to encode Fisher Vector faster,
sum of these require only less one fifth in case of HOG Patch and less one fourth in case of
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Table 1 Classification rate within the top and top 5 candidates by the proposed methods, the server-side
method proposed by [Matsuda et al.(2012)], and the extended version of the proposed method.

method top1 top5
SURF-BoF+ColorHistogram 42.0 68.2

HOG Patch-FV+Color Patch-FV 49.7 77.6
HOG Patch-FV+Color Patch-FV(flip) 51.9 79.2

MKL[Matsuda et al.(2012)] 51.6 76.8
Extended HOG Patch-FV+Color Patch-FV(flip) 59.6 82.9

Color Patch than memory space of codebook for BoF, respectively. Java heap (mainly except
image processing) and native heap (mainly image processing) the implemented application
required were about 16MB and 3MB. We realize the mobile system with low memory space.
Therefore we are able to increase the number of recognition target and feature dimension.

6 Experiments

In this section, we describe experimental results regarding recognition accuracy and pro-
cessing time. In addition, we also explain the evaluation result by user study.

In the experiments, we prepared one hundred categories food image dataset which has
more than 100 images per categories and all the food item in which are marked with bound-
ing boxes. The total number of food images in the dataset is 12,905. Figure 6 shows all the
category names and their sample photos.

We set the validation data and the test data for each category as 20 images. The rest is
the train data, and evaluated classification rate 5 trials, randomly changing the images in
the five-fold cross validation manner. We used Samsung Galaxy Note II (1.6GHz 4 cores, 4
threads, Android 4.1) for measuring the processing time of image recognition.

6.1 Evaluation on classification accuracy

In this experiments, we compare the two types of the proposed systems with server-side
recognition system by Matsuda et al [Matsuda et al.(2012)].

Figure 7 shows classification rate of each recognition method and Table 1 shows classifi-
cation rate within top1 and top 5. SURF-BoF+Color Hist. achieved 42.0% and 68.2% within
the top 1 and the top 5 candidate, HOG Patch-FV+Color Patch-FV achieved 49.7% and
77.6% classification rate, respectively. In case of adding flipped images as training data, the
results were slightly improved, and it achieved 51.9% and 79.2% classification rate within
top1 and top5. Adding flipped training images makes variability of training data increase,
which is expected to be effective for HOG patch, since HOG is not invariant to rotation.

Our second approach is better than [Matsuda et al.(2012)] which is the server-side high
cost recognition system. This shows food recognition on a smartphone is equivalent to the
conventional server system in terms of recognition accuracy.

The bottom row in Table 1 shows the classification rate of the extended version of the
second approach. In this extended version, the number of GMM components are doubled
(64 Gaussians), the dimension of HOG Patches are 32 (original was 24), and spatial pyra-
mid [Lazebnik et al.(2006)] was applied. Although the dimension of image features, pro-
cessing time and memory requirements increased greatly, the classification rate was im-



Real-time Food Recognition System on a Smartphone 13

SURF 

food region 

score 

Core 1 Core 2 Core 4 Core 3 

Color 

SVM 

Bag-of-Features 

reliable direction 

Fig. 4 Processing flow and assignment on CPU cores for the system using bag-of-features and color his-
togram.
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Fig. 5 Processing flow and assignment on CPU cores for the system using a HOG patch and a Color patch
with Fisher Vector
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rice eels on rice pilaf chicken-’n’-egg on
rice pork cutlet on rice beef curry sushi chicken rice fried rice tempura bowl

bibimbap toast croissant roll bread raisin bread chip butty hamburger pizza sandwiches udon noodle

tempura udon soba noodle ramen noodle beef noodle tensin noodle fried noodle spaghetti Japanese-style
pancake

takoyaki gratin

sauteed
vegetables croquette grilled eggplant sauteed spinach vegetable

tempura miso soup potage sausage oden omelet

ganmodoki jiaozi stew teriyaki grilled
fish

fried fish grilled salmon salmon meuniere sashimi grilled pacific
saury sukiyaki

sweet and sour
pork

lightly roasted
fish

steamed egg
hotchpotch

tempura fried chicken sirloin cutlet nanbanzuke boiled fish seasoned beef
with potatoes hambarg steak

steak dried fish ginger pork saute spicy
chili-flavored tofu

yakitori cabbage roll omelet egg sunny-side up natto cold tofu

egg roll chilled noodle stir-fried beef and
peppers simmered pork boiled chicken

and vegetables sashimi bowl sushi bowl
fish-shaped

pancake with
bean jam

shrimp with chill
source roast chicken

steamed meat
dumpling

omelet with fried
rice cutlet curry spaghetti meat

sauce fried shrimp potato salad green salad macaroni salad
Japanese tofu and

vegetable
chowder

pork miso soup

chinese soup beef bowl rice ball pizza toast dipping noodles french fries goya chanpuru kinpira-style
sauteed burdock

hot dog mixed rice

Fig. 6 100 kinds of food images which are recognition targets in the paper

proved much. This version can be carried out on not a smartphone but a server, since the
dimension of Color-FV and HOG-FV are 15,360 and 20,480, respectively. We show these
results for reference. Figure 8 shows the results by the original second method and the ex-
tended method.

As the next evaluations, we compare the results by single features. Firstly, we compare
the results by gradient-based local features which are not only SURF-BoF and HOG Fisher
Vector but also HOG-BoF. Secondly, we compare the results by color features which are
color histogram, Color-patch Fisher Vector and Color-patch BoF.

Figure 9 shows the comparison with SURF-BoF, HOG Patch-BoF and HOG Patch-FV.
First, we set that a step of dense grid sampling is every 8 pixels. The difference top1 and top5
classification rate from SURF-BoF and HOG Patch-BoF is only 0.62% and 2.1%, respec-
tively, which means that SURF is slight better. However, HOG Patch-FV achieved higher
performance than SURF-BoF, differ is 2.7% and 3.22%. And then HOG Patch extraction is
very fast than SURF extraction. In this paper, we set that a step of dense grid sampling is
every 6 pixels. Then classification rate was improved. In case of adding horizontally flipped
images for training data, we achieved 36.3% and 63.2% classification rate with top1 and
top5 candidates. The classification rate is 7.52% and 6.9% higher than SURF-BoF.

Next, we evaluated Color Patch feature. Figure 10 shows the color histogram, Color
Patch-BoF and Color Patch-FV. Color histogram divides a given image into 3 × 3 blocks,
and extract a 64-bin RGB color histogram from each block. Totally, we extract a 576-dim
color histogram. Then we apply χ2 kernel feature map. Finally we build a 1728-dim color
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Fig. 7 Classification rate by the two proposed methods and the server-side method [Matsuda et al.(2012)].
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Fig. 8 Classification rate of the mobile version and the extended server version of the second proposed
method (HOG and Color patch with Fisher Vector).

histogram. The difference top1 and top5 classification rate from Color Patch-BoF and color
histogram is only 0.76% and 2.28%, Color Patch-BoF is slight better. However, in case of
Color Patch-FV, classification rate is much improved, and top-1 and top-5 classification rate
is 13.0% and 18.4% higher than color histogram. In case of adding horizontally flipped im-
ages for training data, we achieved 43.0% and 70.6% classification rate. In case of using only
Color Patch feature, we achieved much better classification rate than the first-version sys-
tem, which means that Fisher Vector representation for Color Patch feature is very effective
for food recognition.

According to the experiments of recognition accuracy, we could successfully show ef-
fectiveness of our proposed method. Moreover, we achieved better results than the server-
side result which was obtained by very high cost recognition method [Matsuda et al.(2012)].
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Fig. 10 Classification rate by Color Histogram, Color-Patch-BoF and Color-Patch-Fisher-Vector

Therefore, we have proved that rapid image recognition and high precision is possible on a
smartphone.

6.2 Evaluation on bounding box adjustment

Next, we made an experiments to examine effectiveness of bounding box adjustment. We
magnified ground-truth bounding boxes of test images with 25% in terms of bounding box
size. In fact, we used only 1912 food images as test images in the 5-fold cross-validation
classification experiment, since for some food photos their size are almost the same as the
size of attached bounding boxes and they do not includes 25% background regions. We
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Fig. 11 Classification rates in case of the ground-truth bounding box (BB), 25% magnified bounding box
and adjusted bounding box after 25% magnification (shown as “25%, GrabCut”).

compared the groundtruth bounding boxes, 25%-magnified bounding boxes, and adjusted
bounding boxes after 25% magnification in terms of classification rate under the same con-
dition as the previous experiment. Figure 11 shows the results, which indicates that 25%
magnification of groundtruth bounding boxes degraded the classification rate within the top
five by 6.3%, while 25% magnification with bounding box adjustment degraded the rate by
only 4.5%. From this results, GrubCut-based bounding box adjustments can be regarded as
being effective.

6.3 Evaluation on estimation on food direction

Finally, we made an experiment on estimation of the direction of a food window. We evalu-
ated error in the direction estimation in case of sifting the ground-truth bounding boxes by
10, 15, 20, and 25% to each of eight directions around the original boxes. Figure12 shows
cumulative classification rates of the estimated direction with different shifts. The rates with
less than ±20◦ error and ±40◦ error were 31.81% and 50.34% in case of 15% shift, and are
34.54%, and 54.16% in case of 25% shift. From these results, when the difference between
the ground-truth and the given bounding box is small, estimation of the direction of the
ground-truth bounding box is more difficult. This is because the difference of SVM scores
between them is small in case that the difference in the location of the bounding boxes is
small.

6.4 Evaluation of processing time

We measured processing times on the latest smartphone, Samsung Galaxy Note II (1.6GHz
Quad Core with Android 4.1). We measured recognition time by repeating 20 times and
averaging them. The results are shown in Table 2. Processing time for recognition by the
first method and by the second method are 0.26 seconds and 0.065 seconds, respectively.
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Table 2 Average processing time.

average time [sec]
Bounding Box Adjustment 0.70

[Recognition 1] SURF-BoF+Color Histogram 0.26
[Recognition 2] HOG Patch-FV+Color Patch-FV 0.065

Estimation of Food Direction 0.091

Direction estimation takes 0.09 seconds, while bounding box adjustment is relatively high-
cost, which takes 0.70 seconds. This is why bounding box adjustment are carried out once
after drawn.

Among 0.26 seconds for recognition by the first method and 0.065 seconds for recog-
nition by the second methods, linear SVM classification takes only 0.003 seconds, while
most of the time are taken for extraction of image features. From this results, extraction of
HOG-FV and Color-FV are much faster than extraction of SURF-BoF and color histogram.
In fact, extracting SURF features and voting each feature to one of the 500 codewords to
create BoF vectors are most time-consuming processing.

6.5 User Study

We asked five student subjects to evaluate quality of the proposed system in five step eval-
uation regarding food recognition, how easy to use, quality of direction estimation, and
comparison of the proposed system with the baseline which has no food recognition and
requires selecting food names from hierarchical menus by touching. The evaluation score 5,
3 and 1 means good, so-so, and bad, respectively. At the same time, we measured time for
selecting food items with food recognition, and compared it with the time for selecting food
items from the hierarchical menu by hand.

Figure 13 shows the spent time for selecting each food item. The median time were 5.1
second with food recognition, and 5.7 second by hand. This means the proposed system can
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Fig. 13 Time comparison: food recognition vs. hierarchical menu.

Table 3 User study results which are the average of five-step evaluation scores.

Outcome Measure average score
Recognition quality 3.4

Facility to use 4.2
Quality of Direction Suggestion 2.4

Proposed System Quality
3.8

(compared with hand-selection)

help a user select food names faster than from a hierarchical menu by hand. However, for
some food items which not able to be recognized, it spent long time to find food names using
food recognition.

Table 3 shows the system evaluation by the five grade evaluation. Except for suggest
direction, more than three points are obtained. Especially, usability of the system is good,
since recognition is carried out in a real-time way. On the other hand, estimation of the
expected food region is not evaluated as being effective, since the classification accuracy is
not so good for practical use. We will improve it as a future work.

7 Conclusions

We proposed a mobile food image recognition system and two types of food recognition
methods. One is the combination of the standard bag-of-features and color histograms with
χ2 kernel feature maps, and the other is a HOG patch descriptor and a color patch descriptor
with the state-of-the-art Fisher Vector representation. In both cases, we used a liner SVM as
a classifier, which is fast and memory-efficient.

In the experiments, we have achieved the 79.2% classification rate for the top 5 category
candidates for a 100-category food dataset with the ground-truth bounding boxes when we
used HOG and color patches with the Fisher Vector coding as image features. It is 11.0 point
higher than the result by color histogram and SURF-BoF with χ2 kernel feature maps. In
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addition, it is superior to very high cost server side recognition method. Regarding process-
ing time it is only 0.065 second for 100 kinds of targets. It is about four times faster than the
processing time by color histogram and SURF-BoF.

As feature works, we plan to extend the system regarding the following issues:

– Touch just a point instead of drawing bounding boxes to specify food regions.
– Use multiple images to improve accuracy of food item recognition.
– Improve accuracy of estimation of expected food regions or move the bounding boxes

automatically instead of only showing the direction.
– Take into account additional information such as user’s food history, GPS location data

and time information.
– Increase the number of food categories to make the system more practical.

Note that Android application of the proposed mobile food recognition system can be
downloaded from http://foodcam.mobi/ .

——————————————
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