A Visual Analysis of the Relationship between Word Concepts and Geographical Locations

ACM International Conference on Image and Video Retrieval (ACM CIVR) Island of Santorini, Greece, July 9th, 2009

Keiji Yanai, Hidetoshi Kawakubo and Bingyu Qiu Department of Computer Science, The Univ. of Electro-Communications, Tokyo, Japan

"Sushi" in Caltech 256

(Probably) Collected in English Keywords

"Sushi" in our own dataset

Collected in Japanese Keywords

Which do you like to eat ?

These two "sushi" image sets are surely different, although both are image sets associated with the "sushi" concept !

Caltech "sushi"

Japanese "sushi"

"Sushi" over the world

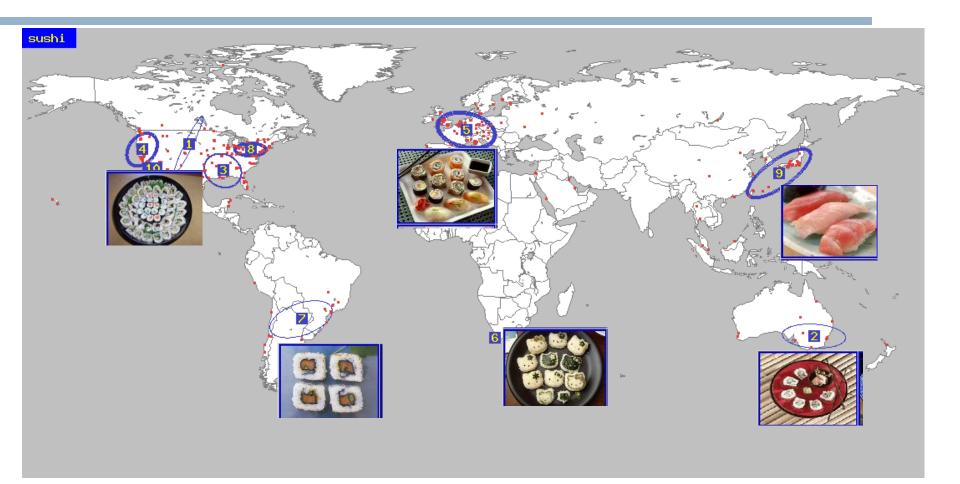


Image sets corresponding to the same concept are changing depending on locations or cultures.

Questions about concepts and locations (or culture)

From this observation, representative image sets associated with a given concept might change (slightly) depending on locations or cultures.

- Questions?

Which concepts are location-dependent ?

- Which concepts are global (unchanged) over the world ? (e.g. "sea", "sky")
- How concepts change depending on locations ?

"Sea": global concept

The Aegean sea The Japanese sea

1. Objective, Background & Related work

Objective of this paper

Analyze the relationship between word concepts and locations using geotagged photos on Flickr

Consist of two parts:

- 1. Entropy-based analysis
- 2. A system to detect "cultural differences"

They are relatively independent.

Background: geotagged photos

The number of geotagged photos on the Web grows rapidly: Flickr, panoramio Flickr has 100,000,000 geotagged photos. (Feb. 2009)

A "geo-tag" represents the coordinates (latitude,longitude) of a location where a photo are taken.

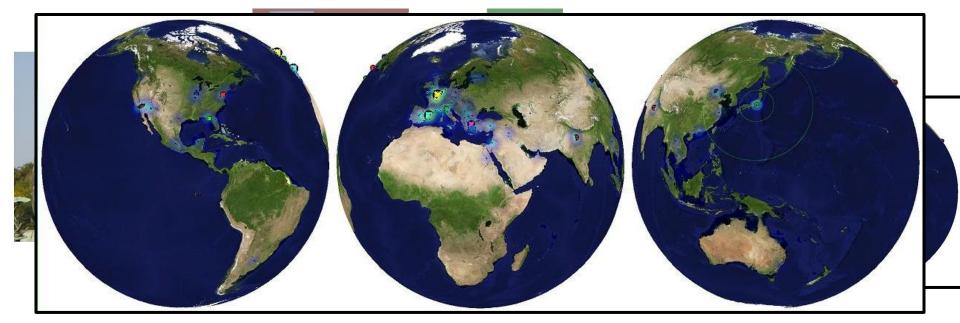
Related work: Geotagged image

- Many work used geotags to organize *landmark photos*.
- Toyama et al. (2003)
- Jaffe et al. (2006)
- Simon et al. (2007)
- Kennedy et al. (2008)
 - and other many works.

The exception is "IM2GPS" [Hayes et al. 2008] among works on geotagged photos using image analysis.

Related work: "IMZGPS" [Hayes et al. 08]

Estimate the probability distribution over the world by nearest neighbor search for largescale geotagged image DB. (ignoring "concepts")

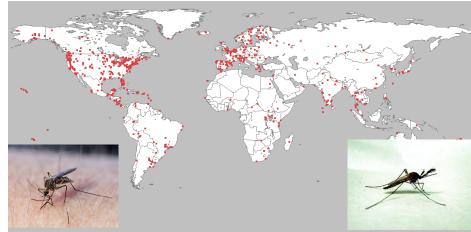


This work suggests there exists the relation between visual features and geo-locations.

There are many non-landmark geotagged photos in Flickr !

fish

mosquito



tulip

Deutschland

2. [Part 1] Entropy-based analysis

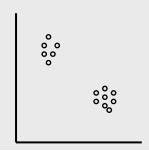
Entropy-based analysis

Examine the relation between distributions of visual features and geo-locations for many concepts

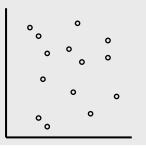
- 1. Entropy-based measure of visual features (Modified method of [Yanai and Barnard 05])
- 2. Entropy-based measure of geo-locations
- 3. Analysis the relation between two kinds of entropy
 - For 230 nouns

Image region entropy [Yanai and Barnard 05]

A measure of "visualness" of words (concepts) Represent the property of the distribution of image region features



Biased / uneven: low entropy having "visualness"



 Kandom/umion
 high entropy
 not having "visi Random/uniform: not having "visualness"

"Low entropy" means the concept has visual property. "High entropy" means the concept has less visual property.

Low entropy: "scary" [Yanai and Barnard 05]

Detected "scary" regions

"Visual" concept

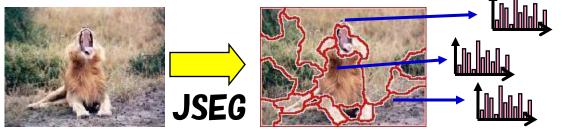
High entropy: "famous"

[Yanai and Barnard 05]

"Non-visual" concept

Modified image region entropy

- **Follow** "image region entropy" [Yanai et al. 05]
 - 1. Use region-based BoF instead of color, texture



Randomly-sampled SIFT-based bag-offeatures(BoF) (1000-dim)

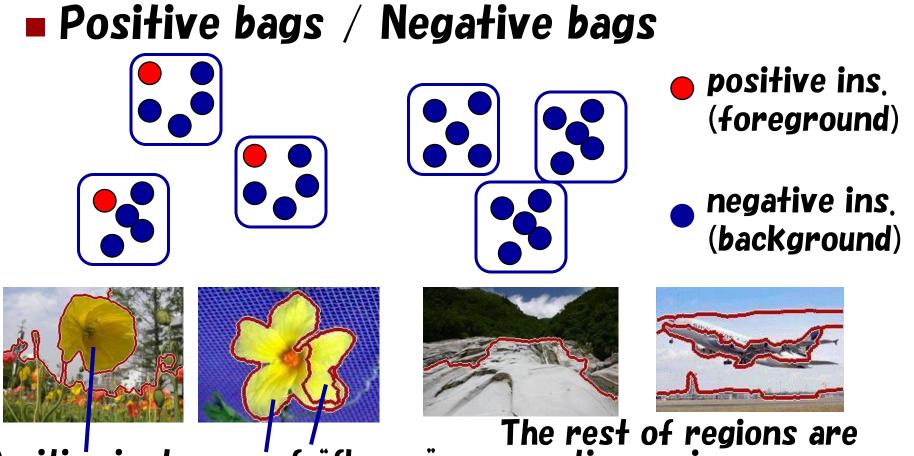
Use mi-SVM to select relevant regions



For excluding background and noise regions

- Model the distribution of region-based BoF vectors with pLSA instead of GMM
- 4. Calculate entropy based on pLSA vectors

Multiple Instance Setting

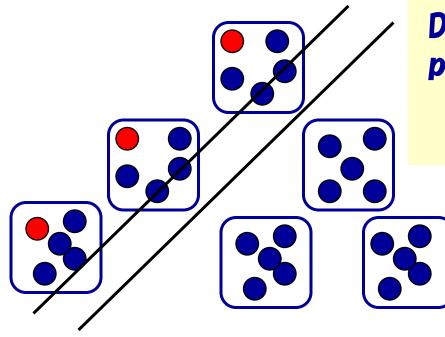


Positive instances of "flower" pseudo-training images negative regions.

random images

mi-SVM [Andrew et al. NIPS 03]

Apply soft-margin SVM iteratively
 Training → classifying → training → classifying → training →



During the iteration, the hyperplane is approaching the optimal plane to discriminate positive instances from negative ones.

> positive ins. (foreground)
> negative ins. (background)

Distribution modeling with the ²⁸ PLSA topic mixture

$$P(w,d) = P(d)\sum_{z} p(w \mid z)P(z \mid d)$$

w: visual words, d: regions, z: topic

Apply PLSA for all the regions of all the random (background) images in advance

📥 Obtain	P(w	Z)	and fix it	(based	distribution)
			Ny Sux		

10,000 random Web images

2 Estimate P(z | d) for each regions with fixed P(w | z) using fold-in heuristic [Hofmann 09]

Calculate image region entropy

H(X): entropy of the given word "X"

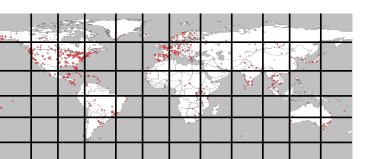
$$H(X) = -\sum_{k} P(z_k|X) \log_2 P(z_k|X)$$
$$P(z_k|X) = \frac{1}{I} \sum_{i} P(z_k|d_i^X)$$

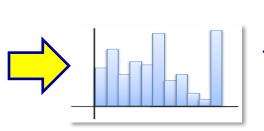
H(X) can be calculated from each of 5 iterations of mi-SVM

Regard the minimum H(X) during
 5 iterations as the final entropy H(X)

Calculate geo-location entropy

- Divide the world into 4 Kinds of grids with every 10 degrees by shifting 5 degrees in terms of both latitude and longitude
- 2. Build histograms regarding the geotags of the selected regions Geo-location entropy
- 3. Calc entropy $H_{geo}(X)$ 4. Select minimum one





$$=-\sum_{i}b_{i}\log_{2}b_{i}$$

3. [Part 1] Results of entropy-based analysis

Experiments

🛛 Data

- 230 nouns including various Kinds of words
 Gathered photos including the given nouns as their tags
- 500 geotagged photos at least / each tag from Flickr (limiting 5 photos for each tag per user ID)
- After selecting relevant regions for each tag, calculate the two entropy: Image region entropy Hvis(X) Geo-location entropy Hgeo(X)

Analyze relation between them

Image region entropy Hvis(X)

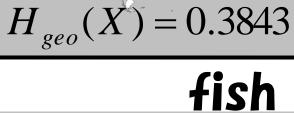
sun	3.6497	
rainbow	4.5538	
moon	4.6686	
mozart	7.8349	
lincoln	7.7327	
school	7.6173	

Geo-entropy H_{geo}(X)

Deutschland

Rome

$H_{geo}(X) = 0.2602$ mosquito



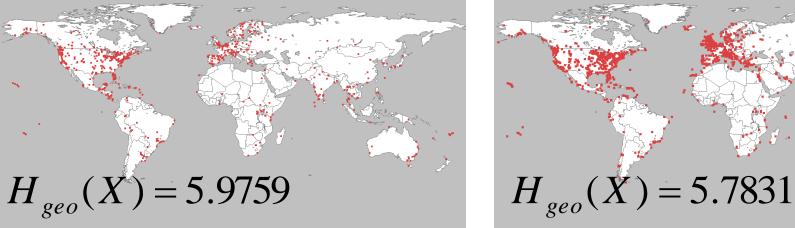
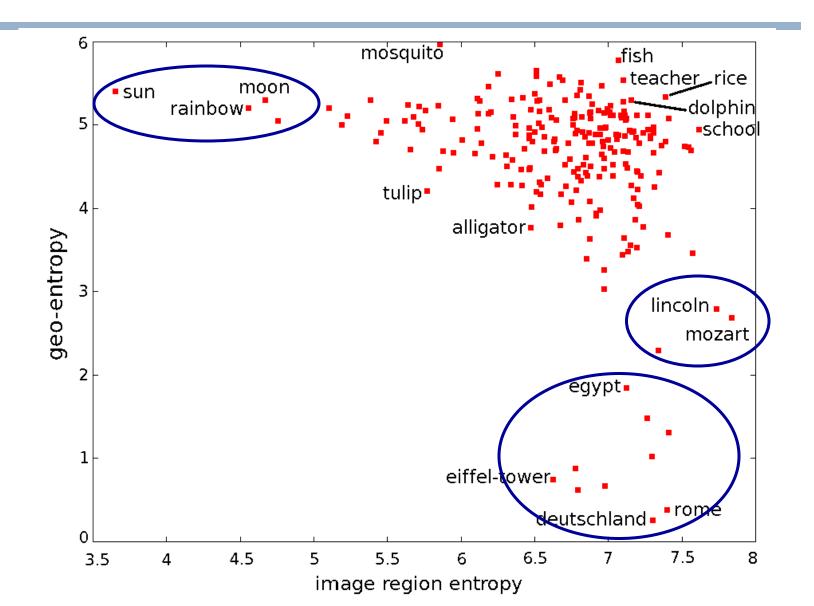
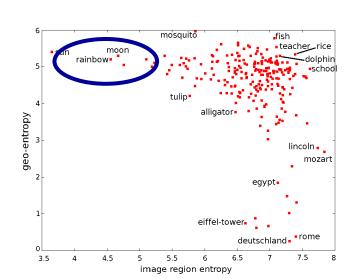


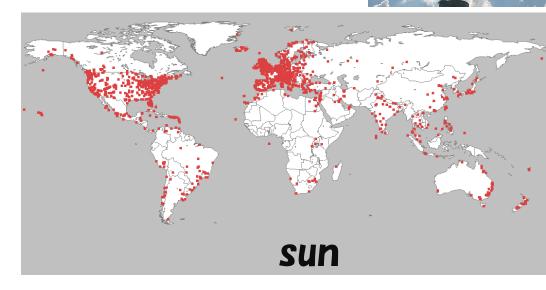
Image entropy vs. geo-entropy



Sun, rainbow, moon

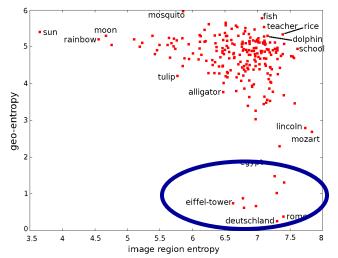
- Comcepts related to sky
 - Image region entropy : low
 - Geo-location entropy : high
 They exists everywhere in the world, and the apperances are similar.





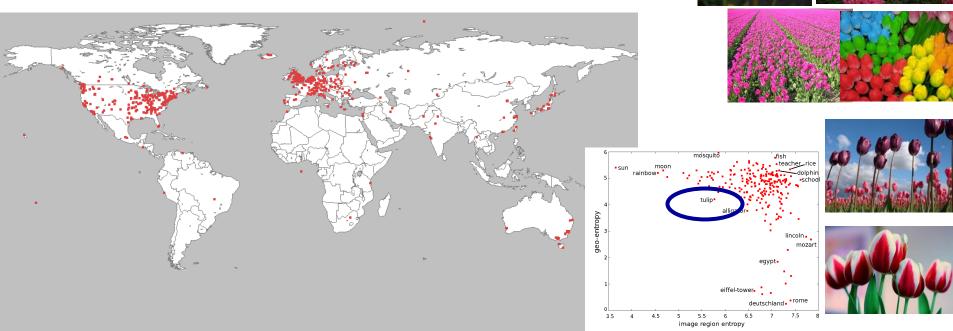
Rome, Deutschland, Mozart

 Image region entropy: high
 Geo-location entropy : low
 The geotags concentrates on specific areas. Their appearances are various.



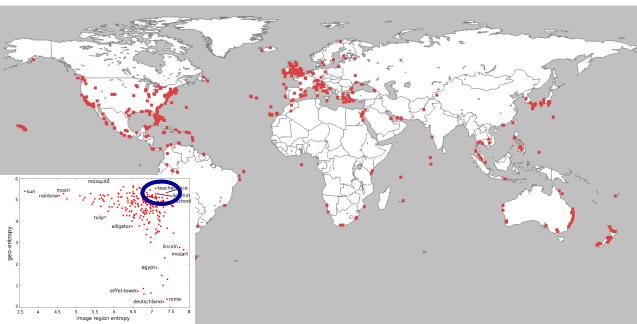
tulip Image region entropy: low Geo-location entropy : med.

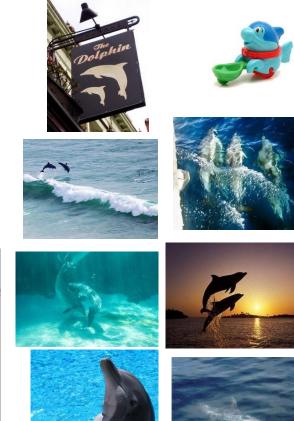
- Variance of color did not reflect on image region entropy, since we use SIFT-based BoF representation.
- Holland and England are main areas.



dolphin Image region entropy: high Geo-location entropy : high

- Most of dolphins are taken in sea or aquarium
- In seaside areas over the world



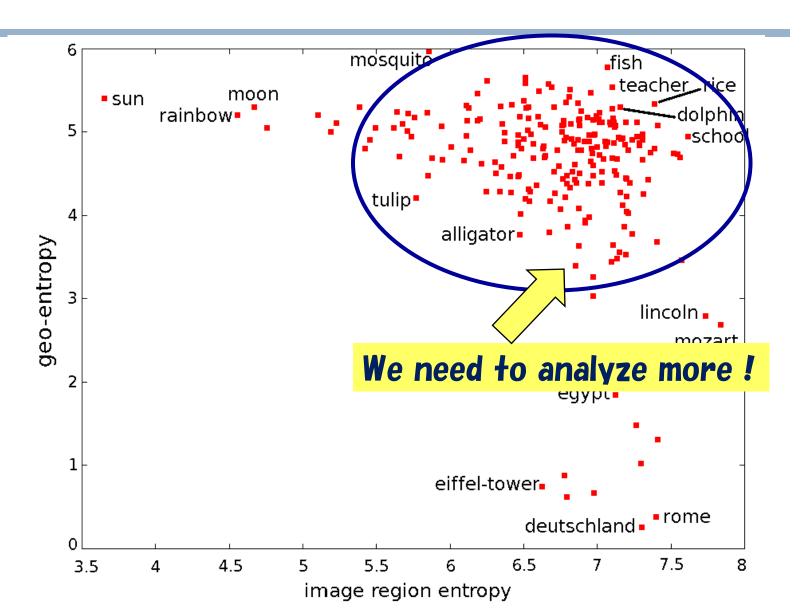


rice

Image region entropy: high Geo-location entropy : high

4. [Part 2]**Discovering concept** differences in terms of location

Image entropy vs. geo-entropy



Objective of the <u>cornd</u> nant Utilize the set of geo-

Utilize the set of geotagged photos on Flickr

A system to mine representative photos for representative areas or regions from geotagged photo DB.

Raw geo-tagged photos on Flickr

Relevant photos after noise image removal

Representative photos for typical regions

Motivation : Foods over the world

So with such geotagged photos, we can discover specific objects over the world.

- ✓ Do you know all kinds of famous "noodles" in the world?
 - "Ramen" and "Soba" in Japan, "Thai noodle" in Thailand, "Chinese noodles", "rice noodle" Taiwan, "Spaghetti" in Italy…

As a result, we can discover cultural differences on specific concepts over the world !

"clothes" , "car" , "sushi"

Approach : three steps

1) Select relevant photos and remove noise

- Extract BoF vectors from all the images
- Visual clustering with k-means
- Select most relevant clusters based on the size of clusters

2) Detect representative regions

Clustering based on geographic locations by k-means

3) Generate representative photo sets for representative regions

- Generate the PLSA topic vectors
- Aggregate photos according to the distribution of mixture topics and rank photos for each representative area

Contributions

- Detect canonical photos of a specific object on each place over the world
 Eg.) "noodle": Chinese noodle in Asia, spaghetti in Europe
 - Do not limit to only scene of specific places or landmarks. Any objects are our targets !
- The method is not very novel, but the objective of the work is very novel.
 - Novel application for geotagged photo DB.

5. [Part 2] Results

Experimental Results

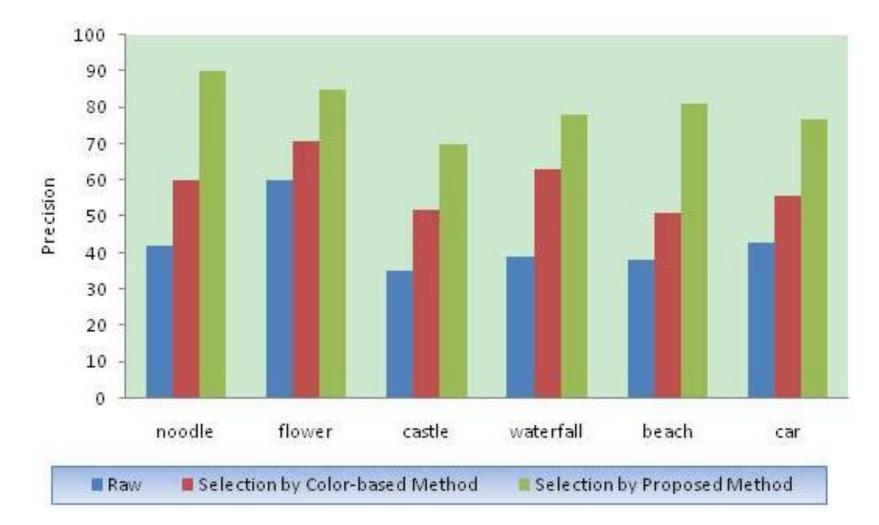
- "noodle", "flower", "castle", "waterfall", "beach", "car"
 - For each concept , collect about 2000 geo-tagged photos from Flickr distributed evenly in the world wide areas

Quantitative evaluation for the 1st step

- Evaluation on our proposed method for extracting the most relevant photos
- Precision and Recall
- Color-histogram-based method for comparison

Examples of regional representative photos

Quantitative Evaluation for 1st step



Average recall : 73.0%

[Example of results] "noodle"

[Example of results] "noodle"

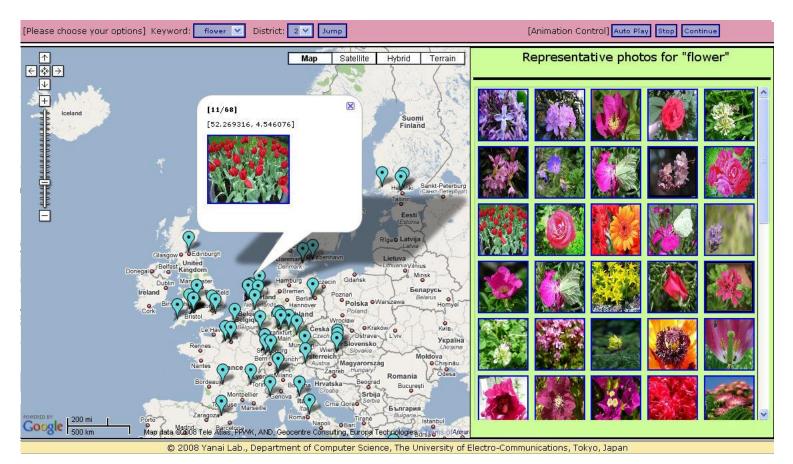
© 2008 Yanai Lab., Department of Computer Science, The University of Electro-Communications, Tokyo, Japan

[Example of results] "flower"

© 2008 Yanai Lab., Department of Computer Science, The University of Electro-Communications, Tokyo, Japan

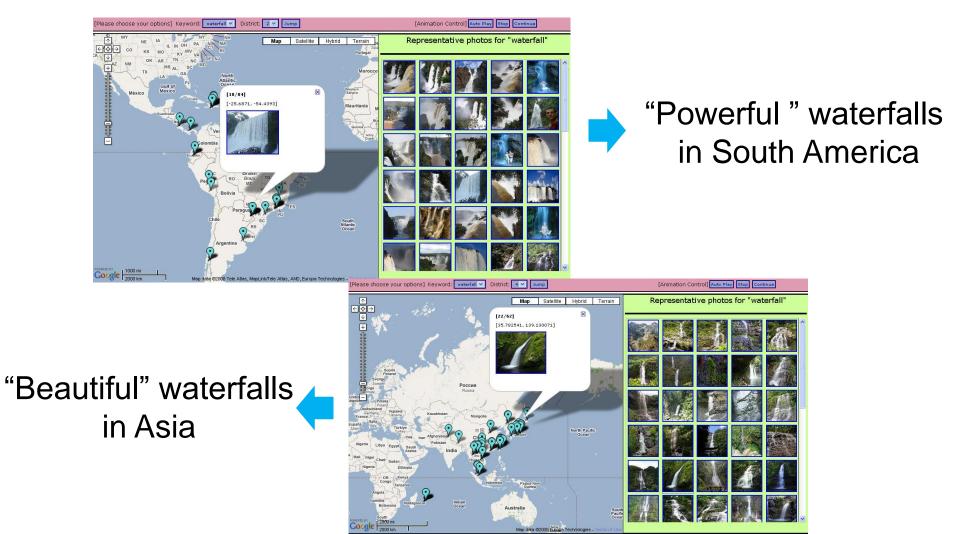
© 2008 Yanai Lab., Department of Computer Science, The University of Electro-Communications, Tokyo, Japar

[Example of results] "flower"



Netherlarstateational flowaflowdip"

[Example of results] "waterfall"



© 2008 Yanai Lab., Department of Computer Science, The University of Electro-Communications, Tokyo, Japan

Wedding cake !

Figure 12: "Wedding cake" in Mid US. Tall cakes are common. This is five-layered.

Figure 13: "Wedding cake" in Europe. They are much shorter and simpler than US. 6. Conclusions

Conclusions

- In this paper, we pointed out that image sets associated with the same concepts are variable depending on locations
- To analysis that, we proposed to use geotagged photos on the Web.
 - 1. Entropy-based analysis
 - Image region entropy and geo-location entropy
 - 2. A system to help detect "cultural differences" by selecting representative photos for each location

Future work

Use cross-language query to get images

- Actually the obtained results are biased by English-culture, because we used only English words when gathering geotagged images from Flickr.
- Discover (subtle) cultural differences automatically (hopefully hard for human)
- Extensive study on cultural differences using a large-scale geotagged photo DB

Towards location(culture) – specific image recognition

This analysis will help build location (culture)-specific object/scene recognition systems.

- For location-dependent concepts, specific training image sets are needed, while for global concepts global image sets are OK.
 - To build systems for Japanese people, a special training set for "Suishi" is needed.
 - For people in Santorini, specific image sets for "house" and "building" might be needed.

Thank you for your attention !

3. Methods