Geotagged Image Recognition sea beach of by Combining Three Different Kinds of Geolocation Features

The University of Electro-Communications, Tokyo, JAPAN Keita Yaegashi and Keiji Yanai

Background & Objective

• Geotagged Photos are easy to obtain.

Experiments

- 1/0 classification for 28 classes by 5-fold cross validation
- 200 positive & 200 negative images for_each class
- Evaluated by average precision

(LS) Location (LM) Landmark specific

latitude=23.23202 latitude=37.24423 latitude=42.84422 latitude=40.84423 longitude=140.85289 longitude=137.68353 longitude=143.89249 longitude=135.18353

geotag = (latitude, longitude)

Can a geotag help image recognition?

when using them only as **2D vectors**. No !

Yes! It can help image recognition by converting it into <u>aerial photos.</u>

longitude=140.85289

31

corresponding aerial photos

Gather 4 levels of aerial photos for each geotagged photo.

Features

Bag-of-features (BoF) (local pattern)

- (1) Sample points by grid sampling (*every 10px*) and describe local patterns around the sampled points with SIFT [Lowe 2004]
- (2) Generate codebooks by K-means (size: 1000) and convert images into BoF vectors by voting to nearest codewords

Represent geographical context

[1] J. Luo, J. Yu, D. Joshi, and W. Hao. **Event recognition: Viewing the** world with a third eye. In *Proc. of* ACM International Conference Multimedia, 2008.

[3] K. Yaegashi and K. Yanai, Can geotags help image recognition ? In Proc. of Pacific-Rim Symposium on Image and Video Technology, 2009.

Yes! It can also help image recognition by reverse geo-coding. <-

[2] Joshi, D., Luo, J.: In: *Proc. of* Inferring generic activities and events from image content and bags of geo-tags ACM International Conference on Image and Video Retrieval.

Question ?

1) To what extent can geotags help? 2) What Kinds of categories are geotags effective for ?

We evaluate the contribution of three features for image recognition by using Multiple Kernel Learning (MKL).

Vis VG VT BA VA VAT VAT VGTD VATD AII Geo-text(T) is more helpful than aerial(A) in many cases. Contribution weights by MKL LS GE SP **OA** FD CR TD AVG Vis Aerial Location Texts Time In all the cases, text(T) weights are larger than aerial(A) weights. In LS and GE, aerial(A) weights are relatively large. Concepts assigned with large weights Examples

0†		costume-play			Disneyland		castle	
features ents of the ord vector		Ariake	0.	0391	parking	0.1170	Himeji	0.0324
		buildin	g 0.	0388	garage	0.1074	city	0.0252
		Tokyo	0.	0250	Tokyo	0.0649	company	0.0201
		parking	<u> </u> 0.	0223	Maiham	<mark>1a</mark> 0.0424	building	0.0199
noont)		Haraju	<mark>ku</mark> 0.	0222	resort	0.0416	school	0.0173
uncept	Concepts assigned with small weights							
	flower			vending machine ramen noodle				
	buildin	g 0.1	089	build	ling	0.0286	building	0.0522
	embass	y 0.0)395	comp	pany	0.0200	company	0.0173
	hall	0.0	0255	noat	office	0.0197	nost office	0.0160

combination of Kernels. •Can estimate kernel weights and SVM model parameters simultaneously. •Can integrate features by assigning one feature to one Kernel

Combined Kernel

Location Roppongi 0.0211 nursery 0.0168 city 0.0117words Kamiyacho 0.0199 Toyama 0.0115 0.0154 center Conclusions Analyzed contribution ratios of aerial images for image recognition using Multiple Kernel Learning(MKL) -AP was improved by 3.16 % on average -Geo-textual features and aerial features improved AP for most of the concepts -Less helpful for "food" concepts -Texts are more helpful than aerial photos for our dataset (limited within Japan) (depending on availability of rev-geocoding) Future work

 More large-scale experiments with much more categories multi-class experiments