Real-time Eating Action Recognition System on a Smartphone

Koichi Okamoto, Keiji Yanai

The Univ. of Electro-Communications Tokyo, Japan

Introduction (1)

- Food recording habit is helpful for diet
- However to record foods, people have to
 - -take photos
 - -input food names
 - -estimate calories

Give up recording soon !!

Time-

consuming !

Introduction (2)

Food recording app by image recognition

• It requires taking meal photos before eating

inappropriate for sharing large platter, hot pot, or BBQ

Objective

A novel food recording system

- Is applicable even for food sharing situation
- Recognize eating action during a meal
- Record all eaten foods, calories and amounts

smartphone

Monitoring eating action

Processing Flow

Mouth detection

- 1. Detect a face
- 2. Detect a mouth from the face region

(We used face and mouse detectors in OpenCV.)

Chopsticks detection

 Detect moving areas by background subtraction
 Detect lines from the moving areas by Hough transform

Eating region detection

If mouth and chopstick regions come close to each other \$ "eating"

containing a food item

Food Classification

Fusion of two Image features

- 1. Bag-of-features with ORB
- 2. HSV color histogram

► Classifier : Linear SVM → fast χ^2 feature map (Vedaldi al et. PAMI12)

System screen: Grill Cam

Current target meal of Grill Cam

Target meal: 'Yakiniku Grill'

• Japanese-style BBQ: grill thin-sliced meat & vege.

Target food items for classifiction: 5 kinds of typical items in Yakiniku

Experiments

1. Evaluation of food classification accuracy

2. User study on system usability

Classification accuracy results #Training images : 450 #Test images : 50 Classification accuracy : 74.8%

User study (1)

Comparison of two systems:

- Baseline system: manual recording system by touching food item buttons
- Proposed system
 eating action recognition
- 5-step evaluation
 - 5 (better) 3 (soso) 1 (bad)
- Two questions for five subjects

Screen of the baseline system

User study (2)

Two questions for five subjecs:

1.How easy to take eating record ?
 Baseline system: 2.0
 Proposed system: 4.8

2.How easy to see calorie intake during meal? Baseline system: 3.0 Proposed system: 3.4

Better than the manual baseline system

Conclusions

- A novel food recording system
 - Recognize eating action during a meal
 - Record all eaten foods, calories and amounts
 - Is appropriate for food sharing situation such as "Yakiniku"
- Accuracy: 74.8%
- User study: Effective,

but need to improve UI

Future works

• Add other types of meals:

Improve classification accuracy: → Fisher Vector

Estimate the food volume

Thank you for your attention !

Yakiniku alone with Grillcam !

Chinese food recognition

- Mapo doufu
 Tofu, Minced meat...
- Shrimps in chili sauce
 Shrimps, Onion...
- sweet-and-sour pork
 Pork, Carrot, Pineapple...

• Eat some food items in one bite

 \rightarrow Pre-defined fixed calories is average calories

Mouth and Chopsticks detection accuracy

- Mouth detection accuracy is high
- Chopsticks detection accuracy is not high
 - There are lines in background
 - Detected Chopsticks are longer than the actual

Another tableware

- Fork and knife are straight
 - Can be same method as chopsticks detection
- If eat sandwiches or onigiri
 - We have to detect hand

Real food and food sample

Front part detection

Problem

 Mixture of real foods and food samples for training image set
 food samples are not good for training image set

GrillCam: A Real-time Eating Action Recognition System toward Accurate Estimation of Food Calorie Intake

Koichi Okamoto and Keiji Yanai The University of Electro-Communications, Tokyo

Introduction (1)

- Recording food habit is helpful for dietary
- However,
 - -take photos
 - -input food names
 - -estimate calorie
 - etc...

Quit recording soon !!

Time-

consuming !

Introduction (2)

Food recording app by image recognition

It requires taking meal photos before eating
 inappropriate for sharing large platter,
 hot pot, and BBQ

Our proposed system : GrillCam Very new type of mobile food recording system

- Recognize eating action during meal
- Automatic recording all the eaten food food item category, calorie, amounts...

Processing Flow

Capture frame

Mouth detection Chopstick detection

UI of GrillCam Android App : Grill Cam

(In the current implemention, the target is a "Yakiniku" meal.)

Evaluation results

Two kinds of evaluations

1. Classification accuracy (5–fold CV) \rightarrow 74.4 %

2. Simple user study (5 subjects)

→Comparison with the baseline system

which has no recognition in 5-steps

	baseline	GrillCam
usability	2.0	4.8

Much better than the no-recognition baseline

You can try GrillCam at the MM demo !!

You can experience a new type of meal with **Grillcam**!