AN ANALYSIS ON VISUAL RECOGNIZABILITY OF ONOMATOPOEIA USING WEB IMAGES AND DCNN FEATURES

Wataru Shimoda, Yanai Keiji The Univ. of Electro-Communications Tokyo, Japan

1 INTRODUCTION

Onomatopoeia Express source of the sound Ex) Tic tac, quock

1 INTRODUCTION

- Onomatopoeia in Japanese
 - Express not only source of sounds
 - Express feeling of visual appearance or touch of objects or materials
 - Many onomatopoeia words

EXAMPLE OF ONOMATOPOEIA IN JAPANESE

zara-zara means being rough surface like sandy texture fuwa-fuwa means being very softy like very soft cotton

1 INTRODUCTION

This work:

- Analyze the relation between images and onomatopoeia
- Use a large number of tagged images on the Web
- State-of-the-art visual recognition method
 - Improved Fisher Vector(IFV)
 - Deep Convolutional Neural Network Features (DCNN features)

2 RELATED WORK

- material recognition
 - Flickr Material Database (FMD)
 - Describable Textures Dataset (DTD)
- IFV and DCNN features are effective

DTD image

2 RELATED WORK

- Image filtering
 - Amazon Mechanical Turk (AMT)
- AMT has some demerits
 - It costs much
 - To annotate Japanese onomatopoeia is hard for general AMT worker

This work:

Constructs an onomatopoeia image dataset based on <u>automatic</u> method

3 PROPOSED METHODS

 Construction of onomatopoeia dataset

 Evaluation of gathered onomatopoeia images in terms of recognizability

FLOW OF CONSTRUCTING DATASET

3.1 GATHER WEB IMAGES

Bing Image Search API Japanese Onomatopoeia word as query

gotsu-gotus

zara-zara

fuwa-fuwa

IMAGE FILTERING

Re-rank by image recognition

3.2 RE-RANKING PROCESS DETAIL

expected zara-zara image

Gather 1000 image by Bing API

Figure.1 Top 50 image of search result (query: zara-zara)

3.2 RE-RANKING PROCESS DETAIL

•First re-ranking: uses top 10 images

Figure.1

of search result as positive images

Figure.2 Top 50 image of first re-ranking result (query: zara-zara)

3.2 RE-RANKING PROCESS DETAIL

Figure.2

Second re-ranking: uses top 20 images
 of first re-ranking result as positive images

 [10]-0562954
 [13]-0580391
 [0]-0606154
 [74]-0.610842
 [529]-0.611960
 [72]-0.615467
 [2]-0634928
 [174]-0.659713
 [7]-0662905
 [18]-0684488

 [278]-0667079
 [101]-0678147
 [92]-0678147
 [976]-06800842
 [15]-0704575
 [170]-0715651
 [1]-0716568
 [351]-0718880
 [345]-0718880
 [671]-0725849

 [679]-0725713
 [138]-073914
 [173]-0739188
 [28]-0740951
 [612]-0742711
 [683]-0749260
 [986]-0749361
 [141]-0754342
 [726]-0.759914
 [843]-0773039

 [679]-0725713
 [113]-0776085
 [580]-0.778962
 [71]-0.781207
 [268]-0.783628
 [598]-0795921
 [979]-0.796928
 [604]-0807477
 [140]-0.903581
 [208]-0806834

 [490]-0.775088
 [113]-0776085
 [580]-0.778962
 [201]-0.816445
 [589]-0.783628
 [598]-0.795921
 [979]-0.796928
 [604]-0807477
 [140]-0.903581
 [208]-0.806834

 [665]-0.814688
 [102]-0.815452
 [93]-0.815452
 [231]-0.816445
 [589]-0.922060
 [3]-0.827356
 [237]-0.829857
 [61]-0.830684
 [375]-0.837664
 [730]-0.837632

Figure.3 Top 50 image of second re-ranking result (query: zara-zara)

3.3 EVALUATION OF RECOGNIZABILITY OF ONOMATOPOEIA WORDS

- Mix 50 onomatopoeia images and 5000 random noise images
- Discriminate onomatopoeia images from noise images
- Regard that the obtained average precision means the recognizability

3.4 IMAGE FEATURES

- Image Features
 - Improved fisher vector (IFV)
 - Deep Convolutional Neural Network activation feature (DCNN)

DEEP CONVOLUTIONAL NEURAL NETWORK FEATURES (DCNN FEATURES)

- Overfeat
 - Pre-trained with Image Net 1000 category
 - •Use middle layers (layer 5, 6 and 7)
 - L2-normalize

Layer5: 36864 dimension Layer6: 3072 dimension Layer7: 4096 dimension

3.5 CLASSIFICATION

Support vector machine (SVM)Linear SVM

4 EXPERIMENTSTwenty Japanese onomatopoeia words

onomatopoeia	meaning	onomatopoeia	meaning
pika-pika	shining gold	mofu-mofu	softly
bash-basha	splashing water	mock-mock	volumes of smoke; mountainous clouds
fuwa-fuwa	softly; spongy	kara-kara	hanging many metals
nyoki-nyoki	shooting up one after another	bou-bou	overgrown
kira-kira	shining stars	fuwa-fuwa	well-roasted
gune-gune	winding	siwa-siwa	wrinkled; crumpled
toge-toge	thorny; prickly	zara-zara	sandy; gritty
butsu-butsu	a rash	kari-kari	crispy; crunch
puru-puru	fresh and juicy	guru-guru	whirling
gotsu-gotsu	rugged; angular; hard; stiff	giza-giza	notched; corrugated

Zara-zara

Guru-guru

Kari-kari

Mock-mock

4.1 EVALUATION OF GATHERED IMAGES

feature		DCNN		
Re-ranking	IFV	Layer7	Layer6	Layer5
Before (search result)	68.6			
After (dataset)	56.0	79.3	82.0	93.2
After-Before (effect(up))	-12.6	+10.7	+13.4	+24.6

4.2 EVALUATION OF RECOGNIZABILITY

DCNN features outperformed IFV clearly

Layer5 result is prominent

RECOGNIZABILITY RESULT

IFV (gotsu-gotsu) 73.3%

RECOGNIZABILITY RESULT

DCNN Layer5 (gotsu-gotsu) 94.5%

5 CONCLUSIONS

- Examined if Japanese onomatopoeia images can be recognized
- DCNN features extracted from the layer 5 achieved 93.2 % maps
- Layer 5 was the most effective feature for onomatopoeia images

END

FUTURE WORK

Noun + onomatopoeia word

- Ex) dog + huwa-huwa, dog + shiwashiwa
- onomatopoeia images classification

EVALUATE DCNN LAYER PRECISION

- DCNN Layer5 feature result is good
- Not all twenty Onomatopoeia precision is improved

IMPROVED BY LAYER5 FEATURE • Texture image

shiwa-shiwa Layer6: 75.5% Layer5: 97.6% **+22.1%** zara-zara Layer6: 86.4% Layer5: 98.7% **+12.3%**

NOT IMPROVED BY LAYER5 FEATURE •Object image

mofu-mofu Layer6: 96.4% Layer5: 92.4% -6.0% jara-jara Layer6: 99.4% Layer5: 92.7% **-6.7%**

FEATURE MAPS

Layer6 and Layer 7 precision is improved by feature maps

	DCNN			
Feature	Feature			
reature	Layer7	Layer6	Layer5	
Maps(%)	91.3	95.3	93.2	

NEGATIVE IMAGE

Image net

- 10,000 category
- •We gather an one image each category

- We use the same feature in the two steps re-ranking and evaluating
- IFV can fail to construct the dataset.
- IFV precision may be reduced excessively by the method

SVM

SVM train with 50 positive images + 1000 negative images

 Use another 5000 negative images to evaluate recognizability

FAILED CASE

Sara-sara

We expected such a sara-sara object

