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ABSTRACT
We propose a CNN-based“food-ness”proposal method which

requires neither pixel-wise annotation nor bounding box an-

notation. Some proposal methods have been proposed to de-

tect regions with high“object-ness”so far. However, many of

them generated a large number of candidates to raise the re-

call rate. Considering the recent advent of the deeper CNN,

these methods to generate a large number of proposals have

difficulty in processing time for practical use. Meanwhile,

a fully convolutional network (FCN) was proposed the net-

work of which localizes target objects directly. FCN saves

computational cost, although FCN is essentially equivalent

to the sliding window search. This approach made large

progress and achieved significant success in various tasks.

Then, in this paper we propose an intermediate approach

between the traditional proposal approach and the fully con-

volutional approach. Especially we propose a novel pro-

posal method which generates high “food-ness” regions by

fully convolutional networks and back-propagation based ap-

proach with training food images gathered from the Web.

Keywords
foodness detection, food segmentation, convolutional neural

network, deep learning, UECFOOD-100

1. INTRODUCTION
In recent years, a recording food habit for health control

has become popular. Food records can provide various nu-

merical statements such like calories and nutrition. These

numerical statements have potential to solve the problems

of unbalanced food habit. While food recordings are use-

ful for us, food recording imposes us on some labor. This

problems are remarkable with manual way, most of people

are expected to feel that it is troublesome labor to input
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names of food items by text at every meal. To simplify food

recordings are needed.

Food image recognition plays an important role in sim-

plifying food recordings. If we replace manual recordings

to taking a picture, we can reduce burden dramatically and

may get feeling free even though the process is needed at

every meal. To simplify food recording also matches the re-

cent fashion so that there are trends uploading food images

to SNS. In technical aspects, food image recognition also

matches recent fashion because of recent large advance of

deep neural network. Deep Convolutional Neural Network

(DCNN) have been proved for large-scale object recogni-

tion at ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2012. Krizhevsky et al. [21] won ILSVRC2012

with a large margin to all the other teams who employed

a conventional hand-crafted feature approach. Tremendous

advance with DCNN still continue now since that success. In

ILSVRC Challenge 2015, Szegedy et al. [40] and Simonyan

et al. [37] overcome human score. In ILSVRC Challenge

2016, He et al. [13] achieved state-of-the-arts and even hu-

man performance with over one hundred layers. Besides,

DCNN also has broken the state-of-the-arts in the other var-

ious tasks of computer vision. Especially, DCNN have made

great progress in object detection and semantic segmenta-

tion tasks.

In food recognition, object detection and semantic seg-

mentation are also important tasks. Detection task provides

bounding box with target object and semantic segmenta-

tion task predicts class labels of each pixel in a given image.

We can estimate food position and obtain food sizes with

bounding-box-level or pixel-level from the results of these

tasks. In particular, we consider predicting food sizes are

important in food recognition so that food sizes must be re-

lated to food amount. Precise food calorie estimation is one

of the most practical problem in food recording. The knowl-

edge on food amount related to a food calorie are widely

accepted as common understanding in general. Hence, ob-

ject detection and semantic segmentation will lead calorie

estimation better.

However, most of the CNN based object detection and se-

mantic segmentation methods assume that additional anno-

tation are available such like bounding-box annotation and

pixel-wise annotation, which is costly to obtain in general.



On the other hand, collecting images with image-level anno-

tation is relatively easier than those pixel-level annotation,

since many images attached with tags are available on hand-

crafted open image data sets such as ImageNet as well as

on the Web. In this work, we focus on weakly-supervised

semantic segmentation which requires neither pixel-wise an-

notation nor bounding box annotation, but only image-level

annotation.

In general, object detection and semantic segmentation

with bounding-box annotation or pixel-wise annotation are

called as fully supervised method, while object detection

and semantic segmentation with only image-level annota-

tion are called as weakly supervised method. In the recent

years, some weakly supervised object detection and seman-

tic segmentation methods with DCNN were proposed. How-

ever, most of the previous works were tested on only Pascal

VOC 2012 dataset. Though Pascal VOC 2012 dataset in-

cludes multi-label images, most of the images in the food

image dataset have only a single label. The characteristics

of both dataset are different. Therefore, we believe that it is

meaningful to confirm the effectiveness of weakly supervised

methods for food image domain. In this paper, we focus

on weakly supervised detection and segmentation for food

images and confirm the effectiveness of weakly supervised

methods for food image domain.

In this work, we use“Distinct Class-specific Saliency Maps

(DCSM)” [36] as a weakly supervised detection and segmen-

tation method. This method showed high performance in

weakly supervised segmentation task, and it can be adapted

to the other targets easily. However, DCSM is not always

effective for food image domain, since food image datasets

contain mainly single label training images and the number

of a few multiple label images is very limited. Therefore, in-

stead of using DCSM for food segmentation directly, we use

DCSM to generate high “food-ness” regions in the similar

way to the traditional detection or segmentation methods

such as RCNN (Region CNN) [9] and SDS (Simultaneous

Detection and Segmentation) [11]. Because the number of

food categories are larger, and food textures across differ-

ent kinds of foods are more similar to each other compared

to the case of generic objects, firstly we estimate food can-

didate regions by DCSM, and secondly classify each of the

candidate regions into one of all the trained food categories

(100 in the experiment).

We summarize our contributions as below:

• We proposed a novel DCSM-based proposal method

for food images.

• We made experiments and confirmed the effectiveness

of the proposed method.

2. RELATED WORKS
In the paper, we focus image recognition on food domain.

Our work is also related to object detection and semantic

segmentation. As related works, we mention the previous

food recognition studies including food detection and seg-

mentation, and the recent CNN-based detection and seg-

mentation works for generic images.

2.1 Food Recognition
Food image recognition is one of the promising applica-

tions of visual object recognition, since it will help estimate

food calories and analyze people’s eating habits for health-

care. Many works have been published so far [2, 15, 18, 23,

4, 1, 45].

Meanwhile, recently the effectiveness of Deep Convolu-

tional Neural Network (DCNN) have been proved for large-

scale object recognition at ImageNet Large-Scale Visual Recog-

nition Challenge (ILSVRC) 2012. Krizhevsky et al. [21] won

ILSVRC2012 with a large margin to all the other teams who

employed a conventional hand-crafted feature approach. In

the DCNN approach, an input data of DCNN is a resized

image, and the output is a class-label probability. That is,

DCNN includes all the object recognition steps such as local

feature extraction, feature coding, and learning. In general,

the advantage of DCNN is that it can estimate optimal fea-

ture representations for datasets adaptively, the characteris-

tics of which the conventional hand-crafted feature approach

do not have. In the conventional approach, we extract lo-

cal features such as SIFT and SURF first, and then code

them into bag-of-feature or Fisher Vector representations.

Regrading food image recognition, the classification accu-

racy on the UECFOOD-100 dataset [23] was improved from

59.6% [18] to 72.26% [17] by replacing Fisher Vector and

liner SVM with DCNN.

However, most of the works assumed that one food image

contained only one food item. They cannot handle an image

which contains two or more food items such as a hamburger-

and-french-fries image. To list up all food items in a given

food photo and estimate calories of them, segmentation of

foods is needed. Some works attempted food region segmen-

tation [23, 25, 16, 14].

Matsuda et al. [23] proposed to used multiple methods to

detect food regions such as Felzenszwalb’s deformable part

model (DPM) [7], a circle detector and the JSEG region

segmentation method [6].

He et al. [14] employed Local Variation [8] to segment food

regions for estimating total calories of foods in a given food

photo. In some works for mobile food recognition [25, 16],

they asked users to point rough locations of each food item

in a food photo, and perform GrabCut [34] to extract food

item segments.

In addition, there are some study for estimating calorie

with computer vision technique. Kong et al. [19] recon-

structed 3D food models with multi-angle pictures and es-

timated calories from cubic volume of 3D models. Chen et

al. [5] recognized an image and computed cubic volume from

depth information. Note that they obtained depth informa-

tion by sensor. 3D based calorie estimation methods tend to

impose some labors on users. On the other hand, Myers et

al. [24] proposed calorie estimation application which called

“im2calorie”. They obtained each pixel depth information by

prediction of deep learning and estimated calories. However,

Myers et al. have not achieved practical stage.



Pouladzadeh et al. [32] estimated calories from segmenta-

tion results of an image. They defined a thumb as a base

object, and estimated food volumes and calories from area

ratios of a thumb area and foods. While we can always take

a food picture with a thumb, this method has potential to

make looking worse and taking picture with only one hand

is difficult.

In contrast to previous works, we tackled food image de-

tection in a weakly supervise manner.

2.2 CNN-based Fully-Supervised Object De-
tection and Semantic Segmentation

As the early works on CNN-based semantic segmentation,

Girshick et al. [9] and Hariharan et al. [11] proposed ob-

ject segmentation methods using region proposal and CNN-

based image classification. Firstly, they generated 2000 re-

gion candidates at most by Selective Search [41], and sec-

ondly apply CNN image classification by feed-forwarding of

the CNN to each of the proposals. Finally they integrated all

the classification results by non-maximum suppression and

generated the final object regions. Although these methods

outperformed the conventional methods greatly, they had a

drawback that they required long processing time for CNN-

based image classification of many region proposals.

While Girshick et al. [9] and Hariharan et al. [11] took ad-

vantage of excellent ability of a CNN on image classification

task for semantic image segmentation in a relatively straight-

forward way, He et al. [12], Long et al. [22] proposed CNN-

based semantic segmentation in a hierarchical way. A CNN

is much different from conventional bag-of-features frame-

work regarding multi-layered structure consisting of multi-

ple convolutional and pooling layers. Because CNN has sev-

eral pooling layers, location information is gradually losing

as the signal is transmitting from the lower layers to the

upper layers. In general, the lower layers hold location in-

formation in their activations, while the upper layers hold

local information weakly. He et al. [12] proposed spatial

pyramid pooling which exploited lower layer information for

object detection and reduced large computational cost from

RCNN [9]. Long et al. [22] replaced fully connected layers

to convolutional layers and learned matrix outputs of fully

convolutional networks directly with pixel-wise-annotation

which was often called as an end-to-end network. Later,

Ren et al. [33] proposed Faster RCNN which is an end-to-

end network for object detection task.

2.3 CNN-based Weakly-Supervised Semantic
Segmentation

Most of the conventional non-CNN-based weakly super-

vised segmentation method employed Conditional Random

Field (CRF) with unary potentials estimated by multiple

instance learning [42], extremely randomized hashing for-

est [43], and GMM [46].

As a CNN-based method, Pedro et al. [31] achieved weakly-

supervised segmentation by using multi-scale CNN proposed

in [35]. They integrated the outputs which contained lo-

cation information with log sum exponential, and limited

object regions to the regions overlapped with object propos-

als [27].

Pathak et al. [30, 29] and Papandreou et al. [28] achieved

weakly-supervised semantic segmentation by adapting CNN

models for fully-supervised segmentation to weakly-supervised

segmentation. In MIL-FCN [30], they trained the CNN for

full-supervised segmentation proposed in Long et al. [22]

with a global max-pooling loss which enabled training of the

CNN model using only training data with image-level labels.

Constrained Convolutional Neural Network (CCNN) [29] im-

proved MIL-FCN by adding some constraints and using fully-

connected CRF [20]. Papandreou et al. [28] trained the

DeepLab model [3] proposed as a fully-supervised model

with EM algorithm, which is called as “EM-adopt”. Both

CCNN and EM-adopt generated pseudo-pixel-level labels

from image-level labels using constraints and EM algorithms

to train FCN and DeepLab which were originally proposed

for fully supervised segmentation, respectively. Both showed

Dense CRF [20] were helpful to boost segmentation perfor-

mance even in the weakly supervised setting.

Meanwhile, Simonyan et al. [37] proposed a method to

generate object saliency maps by back propagation (BP)

over a pre-trained DCNN, and showed it enabled semantic

object segmentation by applying GrabCut [34] using saliency

maps as seeds. While all the above-motioned methods on

weakly supervised segmentation employed only feed-forward

computation, Shimoda et al. [36] proposed an improved weakly

supervised segmentation method based on back-propagation

(BP) computation.

Though the above-mentioned weakly supervised method

achieved remarkable progress, they only tested their per-

formance with the Pascal VOC 2012 dataset, i.e. using

multi-label training images and including only general ob-

ject classes. In this paper, we propose weakly supervised

method with only single-label images for food object detec-

tion which is known as one of the fine-grained domain. Our

method combines traditional proposal-based approach and

fully convolutional approach. We show our method is robust

to changing domain from training with single-labeled Web

images to testing with multi-label images.

3. PROPOSED METHOD
We propose a new method to generate food-ness regions

with weakly supervised annotation. Our method is based on

Distinct Class-specific Saliency Maps (DCSM) [36] which

is extension of Simonyan et al. [37]. In this section, we

explain the DCSM and how to adopt the DCSM to food-

ness proposal.

3.1 Overall Architecture
We follow traditional detection method using proposal.

First of all, we generate proposal based on DCSM. Second,

we recognize each candidate region. Finally, we unify over-

lapped candidates by Non Maximum Suppression (NMS). In

this work, we prepare two CNNs for proposal and recogni-

tion. We illustrate an overview in Figure 1. The procedure

of the proposed method process is as follows:



• Recognize an image.

• Sort each food class based on soft max output.

• Back-propagate the upper rank class scores.

• Subtract each class derivative value.

• Obtain food-ness proposals.

• Recognize each of the food-ness candidates.

• Unify overlapped candidates by NMS.

3.2 DCSM
In [37], Simonyan et al. regarded the derivatives of the

class score with respect to the input image as class saliency

maps. However, the position of an input image is the fur-

thermost from the class score output in the deep CNN layers,

which sometime causes weakening or vanishing of gradients.

Instead of the derivatives of the class score with respect to

the input image, Shimoda et al. [36] uses the derivatives

with respect to feature maps of the relatively upper inter-

mediate layers which are expected to retain more high-level

semantic information. In addition, Shimoda et al. [36] ap-

ply some techniques which is known as effective in semantic

segmentation to a backward approach. They select the max-

imum absolute values of the derivatives with respect to the

feature maps at each location of feature maps across all the

kernels, and up-sample them with bi-linear interpolation so

that their size becomes the same as an input image.

The class score derivative vci of a feature map layer is the

derivative of class score Sc with respect to the layer Li at

the point (activation signal) L0
i :

vci =
∂Sc

∂Li

∣∣∣∣
L0

i

(1)

vci can be computed by back-propagation. After obtained

vci , Shimoda et al. [36] up-sample it to wc
i with bi-linear

interpolation so that the size of an 2-D map of vci becomes

the same as an input image. Next, the class saliency map

Mc
i ∈ Rm×n is computed as

Mc
i,x,y = max

ki

|wc
i,hi(x,y,k)|, (2)

where hi(x, y, k) is the index of the element of wc
i . Note that

each value of the saliency map is normalized with tanh for

visualization with α = 3.

tanh(αMi,x,y/max
x,y

Mi,x,y) (3)

The saliency maps of two or more different classes tend to

be similar to each other especially in the image-level. The

saliency maps by [37] are likely to correspond to foreground

regions rather than specific class regions. To resolve that,

Shimoda et al. [36] subtract saliency maps of the other can-

didate classes from the saliency maps of the target class to

differentiate target objects from other objects. Here, Shi-

moda et al. [36] assume that they select several candidate

classes with a pre-defined threshold and a pre-defined mini-

mum number.

The improved class saliency maps with respect to class c,

M̃c
i , are represented as:

M̃c
i,x,y =

∑
c′∈candidates

max
(
Mc

i,x,y −Mc′
i,x,y, 0

)
[c 6= c′], (4)

where candidates is a set of the selected candidate classes.

Subtraction of saliency maps resolved overlapped regions

among the maps of the different classes.

Shimoda et al. [36] use fully convolutional networks (FCN)

which accept arbitrary-sized inputs for multi-scale genera-

tion of class saliency maps. If the larger input image than

one for the original CNN is given to the fully-convolutionalized

CNN, the output becomes class score maps represented as

h × w × C where C is the number of classes, and h and

w are larger than 1. To obtain CNN derivatives with re-

spect to enlarged feature maps, Shimoda et al. [36] simply

back-propagate the target class score map which is defined

as Sc(:, :, c) = 1 (in the Matlab notation) with 0 for all the

other elements, where c is the target class index.

The final class saliency map M̂c averaged over the layers

and the scales is obtained as follows:

M̂c
x,y =

1

|S||L|
∑
j∈S

∑
i∈L

tanh(αM̃c
j,i,x,y), (5)

where L is a set of the layers for which saliency maps are

extracted, S is a set of the scale ratios, and α is a constant

which we set to 3 in the experiments. Note that we assume

the size of M̃j,i for all the layers are normalized to the same

size as an input image before calculation of Eq. 5.

In [39], guided back-propagation (GBP) [39] was adopted

as a back-propagation method instead of normal back-propagation

(BP) used in [37]. The difference between two methods is in

the backward computation through ReLU. GBP can visual-

ize saliency maps with less noise components than normal

BP by back-propagating only positive values of CNN deriva-

tives through ReLU [39].

3.3 Food-ness Proposal
In this paper, we focus on training with single food images

and testing with multiple foods images. In general, chang-

ing domain between training data and testing data causes

performance drop. This problem was known as one of the

cross domain problems or the domain adaptation problems.

With the DCSM method this problem was also observed

and accuracy dropped remarkably. We illustrate our situa-

tion with this domain adaptation problem using Figure 2 in

food images.

In this paper, simply, we avoid this domain adaptation

problem by using region proposals. Proposal methods gen-

erate object region candidates and these candidates should

include target objects. When recognizing target objects in

the candidates, we will obtain better results than recogniz-

ing raw images without proposals. Because, in our situa-

tion, test images might include multiple food images, while

candidate regions even in the multiple food images can be

regarded as single food images. Hence, the condition within

candidate regions can be considered as similar to the condi-

tion of training images.



Figure 1: Processing flow of the our method.

Figure 2: Example of our cross domain situation.

RCNN [10] and SDS [11] are typical methods of detection

and segmentation using proposals with DCNN. They use

Selective Search [41] and MCG (Multiscale Combinatorial

Grouping) [27] as proposal methods. These proposal meth-

ods are also typical and generate a lot of candidate about

2000 with local features. A large number of candidates raise

recall but increase computational cost as well. We consider

the candidates number about 2000 is too large and there are

useless processes for food recognition. Therefore, we propose

a novel proposal method for foods with DCNN.

Briefly, we adapt DCSM for food-ness proposal. The orig-

inal DCSM approach is not effective for the cross domain

problem we mentioned before. In fact, the estimated regions

by DCSM with cross domain are not precise. However, we

observed that most of these regions corresponds to any of the

trained food items in an image. Interestingly, estimated re-

gions for food classes which is not included in a given image

still belong to the other existing objects, and some regions

fit with food regions as shown in Figure 3. This means that

CNN training with cross domain could not transfer knowl-

edge precisely for food, but could learn rough food concepts.

Therefore, we regard the regions estimated by DCSM as food

region candidates which have high “foodness”.

In practice, to adapt DCSM for food-ness proposal we

only augment candidate in Eq. 4. However, we do not ag-

gregate multi-input-scale results due to increasing computa-

tional cost. We can obtain estimated regions P with candi-

date numbers.

Pc =
1

|L|
∑
i∈L

tanh(αM̃c
i ), (6)

Pc are probability map such like saliency maps. We cut Pc

with a threshold so that this probability maps often respond

to some foods. In other words, we divide the probability

maps Pc into several regions based on the peaks of those.

Incidentally we discard some isolate small regions.

P̂c
k ∈ Pc (7)

where K and k ∈ {1, 2, · · · ,K} represents the number of

regions and a region index, respectively.

Finally we regard these regions P̂c
k as food-ness proposal.

To sum up, we augment the candidates class in the DCSM

method and obtain regions from output probability with

DCSM. We can increase the number of candidate classes

until the number of target classes. The maximum number

is 100 in case of using UECFOOD-100 dataset [23] which

we used in the experiments. We will discuss how to choose

augment classes number in Section 4.2.

4. CNN TRAINING
In this paper, we use VGG-16 [38] as a base convolutional

network for fine-tuning with food images. We build two

kinds of the networks separately. They are a proposal net-

work and a recognition network. We fine-tune VGG-16 as

proposal network with fully convolutional technique. We

also fine-tune VGG-16 for recognition network with a tradi-

tional way. In this section, we mention about detail of these



Figure 3: Proposal results. First row show saliency obtained from DCSM. Second row shows regions obtained

from saliency maps. Third row shows bounding boxes we recognize. Red rectangle means it seems to be a

good candidate.

two networks.

4.1 Proposal Network
As an off-the-shelf basic CNN architecture for a proposal

network, we use the VGG-16 [38] pre-trained with 1000-

class ILSVRC datasets. In our framework, we fine-tune a

CNN with training images with only image-level annotation.

Recently, fully convolutional networks (FCN) which accept

arbitrary-sized inputs are used commonly in the works on

CNN-based detection and segmentation such as [26] and [22],

in which fully connected layers with n units were replaced

with the equivalent convolutional layers having n 1 × 1 fil-

ters. Following them, we introduce FCN to enable multi-

scale generation of class saliency maps. When training, we

insert global max pooling before the final loss function layer

to deal with larger input images than the images used for

pre-training of the VGG-16. Global max pooling is an op-

eration which is commonly used for training of CNN in the

works on weakly supervised segmentation. The purpose of

this operation is to convert last output to a vector from a

matrix. Therefore we can train FCN with usual image-level-

label and soft-max loss.

In the training time, we replace fully connected layers with

convolution layers for VGG-16 model and add as global max

pooling layer as we mentioned above.

4.2 Recognition Network
For recognition time, though we change only last layer

for food category outputs, we prepare additional categories

for training. The purpose of the recognition network is to

classify each of the candidate regions estimated by the pro-

posal network. The conditions of recognizing candidates is

different from the condition of the training phase in terms

of including non-target-category-object images and small-

food-patch images. In RCNN [10] and SDS [11], they con-

sider only non-target-category-object images as background

so that they were tested on generic object detection dataset.

However, food recognition is different from generic object

recognition. Food recognition is similar to texture recogni-

tion rather than object recognition, since most of foods have

no fixed shapes. Their shapes varies depending on the way

to serve. Therefore, food tends to be recognized with their

patches by DCNN. For example, in case of recognition of “a

dog”with DCNN, the small part of dogs such as legs and tails

would have low scores in the dog probability map, while, in

case of food recognition, even small patches of rice will have

high score in the rice probability map. To sum up, DCNN

cannot discriminate general objects with limited parts but

can discriminate foods with minimum patch information. To

prevent small part of foods from being recognized as foods,

we add small patches of foods to the non-food class.

Furthermore we add low-resolution food images. Because

we found that a low-resolution image tends to be classified

as food patch category. We guess this is why a small-food-

patch image tends to be a low-resolution image. Therefore,

we add low-resolution images to each food class. Our intu-

ition is that if we remove low-resolution images from train-

ing images, low-resolution images will not be recognized as

small-food-patch images.

We augment training images by cropping and resizing.

Practically, we cropped three images from each training im-

age as food path by random position with random sizes. The

minimum size of cropped image is 50 and maximum size is

150. Note that original image size is 256, i.e. each cropped

image size rate for original image is about 0.2 and 0.6. We

also prepare three images for low-resolution image by down-

sampling and rescaling. We defined down-sample sizes ran-

domly. The minimum down-scale size is 10, and maximum

size is 256 which is equal to original image size. Finally we

obtain an augmented training image set the size of which is

seven times larger than the original training image set.

5. EXPERIMENTS
In the experiments, we used the UECFOOD-100 dataset [23]

and Web food images. The UECFOOD-100 dataset [23] con-

sists of 100 class food categories and each category have 100

images. Note that each food item is annotated with bound-

ing boxes.

In addition, we collected food images of the same cat-

egory as the UECFOOD-100 dataset from the Web. The

collected Web food image set have 100 categories and 1000

images for each category without bounding box annotation.

Most of these Web food images are obtained from the twitter

stream [44] and some images are obtained from Bing API.

We use 1175 multiple-food images included in UECFOOD-



100 as test dataset for object detection. All detection eval-

uations are based on mean average precision (MAP) which

is used in the Pascal VOC detection task as an evaluation

measure.

In addition to 100 food categories, we gathered non-food

images as the 101-th category. We built a negative food im-

age set by gathering images using the Web image search en-

gines with query keywords which are expected to related to

noise images such as “street stall”, “kitchen”, “dinner party”

and “restaurant” and excluding food photos by the CNN

trained with UECFOOD-100. We collected 10,000 non-food

images as negative food samples.

In the experiments, we used a mixture of UECFOOD-100

and Web food images, and a dataset containing onlty Web

food images.

5.1 Augmentation of Training Data for Recog-
nition Network

First of all, we evaluated three cases of recognition net-

work with two datasets with a fixed proposal network set-

ting. Table 1 shows the average precision by three kinds of

training data augmentation with two training data.

“Foodness 2” achived higher performance than “Foodness

1”. This means that adding small patch to the non-food class

is effective. On the other hand, “Foodness 3” achieved the

better results than “Foodness 2”. We can see that adding

low-resolution images is also effective for recognition net-

work. “Foodness 4, 5, 6” are trained with only Web food im-

ages. The average precision (AP) of “Foodness 6” is higher

than AP of ”Foodness 4”and“Foodness 5”, which shows that

adding small patch to the on-food class and using low reso-

lution images are also effective. “Foodness 6” exibits drop of

AP compared with “Foodness 3”, but outperformed “Food-

ness 2”. From these results, we can say that increasing the

number of training images is effective.

5.2 Global Pooling for Proposal Network
Next, we compare two general global-pooling operation,

global average pooling and global max pooling. Table 2

show comparison of final pooling operation for each two

data. Though the previous papers such as [47] mentioned

the effectiveness of global average pooling for object local-

ization, in food-ness proposal, global max pooling is better

than global average pooling. We guess global-max-pooling

network captured smaller items than global-average-pooling

and this matches food item detection task. We need to check

which global-pooling operation matches to the task.

5.3 Comparison with Other Traditional Pro-
posal Methods

Next, we compare our proposal method with other tradi-

tional proposal methods. We evaluate the methods in terms

of mean AP and speed factors. We prepare two traditional

proposal method as baselines. Selective Search [41] and Mul-

tiscale Combinatorial Grouping (MCG) [27] are region pro-

posal methods. Both of them generate a large number of

candidates which is around 2000. To evaluate our proposal

method, we changed the number of candidate classes. Small

candidate class leads more small computational cost since

backward time is reduced. Table 3 shows comparison results.

Note that recognition time is a theoretical value computed

from the candidate number and computational cost for one

image. Foodness with 30 candidate classes AP are better

than [41] and [27] even though 40 times smaller for candi-

date numbers. In addition, even if we reduced the candidate

class number, the mean AP still holds 30%. This mean that

our proposal has good quality for food-ness detection.

Figure 4: Examples of results. Left images are input

images. Center images are detection results. Right

images are ground truth images

6. CONCLUSIONS
We proposed a CNN-based food-ness proposal method

which required neither pixel-wise annotation nor bounding

box annotation. We adopted an intermediate approach in

traditional proposal approach and fully convolutional ap-

proach. Especially we proposed a novel proposal method

which generated food-ness regions by fully convolutional net-

works based backward approach with training Web food im-

ages. Then, we achieved reducing computational cost while

keeping quality for food detection.

In the future work, we will try weakly-supervised food

segmentation in addition to detection, because our food-

ness proposal can generates segmentation results as well.

Although we used Web images in this work, the categories

were limited to the same ones to UECFOOD-100. This can

be regarded as training sample augmentation with Web im-

ages. For future work, we like to train any other kinds of

foods than UECFOOD-100 from the Web automatically. If



Table 1: Mean average precision with six conditions over all the 100 categories, 53 categories (more than 10

items of which are included in the test data), and 11 categories (more than 50 items of which are included in

the test data).

method
small-patch

class
low-resolution

images
training with

only web images
100class
(all)

53class
(#item ≥ 10)

11class
(#item ≥ 50)

Foodness 1 - - - 30.0 29.3 31.9

Foodness 2 X - - 33.7 39.0 33.6

Foodness 3 X X - 39.5 46.0 38.9

Foodness 4 - - X 33.5 35.1 33.3

Foodness 5 X - X 32.2 34.8 31.8

Foodness 6 X X X 36.4 39.9 36.3

Table 2: Comparison of global pooling operation for food-ness.

method
training with

only web images
100class
(all)

53class
(#item ≥ 10)

11class
(#item ≥ 50)

Foodness (average pooling) - 39.5 46.0 38.9

Foodness (average pooling) X 36.4 39.9 36.3

Foodness (max pooling) - 39.9 48.3 37.6

Foodness (max pooling) X 38.9 42.5 38.1

we can this, we can bulit a system to recognize any kinds of

foods.
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