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ABSTRACT
In this study, we create“Caffe2C”which converts CNN (Con-
volutional Neural Network) models trained with the exist-
ing CNN framework, Caffe, C-language source codes for
mobile devices. Since Caffe2C generates a single C code
which includes everything needed to execute the trained
CNN, csCaffe2C makes it easy to run CNN-based applica-
tions on any kinds of mobile devices and embedding devices
without GPUs. Moreover, Caffe2C achieves faster execu-
tion speed compared to the existing Caffe for iOS/Android
and the OpenCV iOS/Android DNN class. The reasons are
as follows: (1) directly converting of trained CNN models
to C codes, (2) efficient use of NEON/BLAS with multi-
threading, and (3) performing pre-computation as much as
possible in the computation of CNNs. In addition, in this pa-
per, we demonstrate the availability of Caffe2C by showing
four kinds of CNN-base object recognition mobile applica-
tions.

CCS Concepts
•Information systems→Mobile information process-
ing systems;
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Mobile Application, Image Recognition, Object Recogni-
tion, Deep Learning, Deep Convolutional Neural Network

1. INTRODUCTION
In recent years, Deep Neural Network (DNN) achieved re-

markable progress. Its effectiveness has been demonstrated
in various fields such as image recognition, audio recognition
and natural language processing. Especially, in image recog-
nition, DNN gave the best performance and outperform even
humans in certain cases such as recognition of 1000 objects.
In the other field than image recognition, DNN achieved the
best performance in the problems on pattern recognition
such as speech recognition or natural language processing.
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Its results confirmed the high generalization ability of DNN.
Note that since in this paper we treat a mobile applica-
tion of image recognition, and a Deep Convolutional Neural
Network (CNN) which is a DNN consisting of convolutional
layers is used in image recognition researches in general, we
call a DNN in image recognition researches a CNN in this
paper.

In addition, due to the rapid increase in research on CNN,
many frameworks of Open-Source Software (OSS) for CNN
have emerged. For example, Caffe [9], Theano [2], Tensor-
flow [1]. In particular, Caffe is the most popular deep learn-
ing framework due to “the fastest framework” and “provid-
ing of Python and MATLAB-based interface”which is being
used over the world. Moreover, since the user community of
Caffe provides a lively activity, the latest research results
around the world tend to be provided by the Caffe-based
implementation.

On the other hand, there is an attempt to achieve CNN
on the mobile devices such as smartphones. Using the CNN
in a mobile environment requires a high computing power
to the device due to convolutional operations in the calcu-
lation process. When a CNN recognizes one image, billions
of computations consisting of multiplication and summing
are needed in general. In addition, there are also a problem
related to mobile-specific memory capacity due to a large
parameter files after training by using a framework such as
Caffe. Especially, when we use the OSS framework for CNN,
we can take advantage of the latest research results have
been published. In order to use the learned parameter files
by Caffe on the mobile, it is necessary to currently use Caffe
for iOS/Android or the OpenCV DNN class. However, they
are not optimized for the mobile devices and their execution
speed is relatively slow.

In this study, we create a Caffe2C converter which con-
verts the CNN model definition files and the parameter files
trained by Caffe to a single C language code that can run
on mobile devices. Since Caffe2C generates a single C code
which includes everything needed to execute the trained
CNN, Caffe2C makes it easy to use deep learning on the C
language operating environment. Moreover, Caffe2C achieves
faster execution speed in comparison to the existing Caffe
for IOS/Android and OpenCV DNN class. The reasons are
as follows: (1) directly converting of the Deep Neural Net-
work to the C code, (2) efficient use of NEON/BLAS with
multi-threading, (3) performing pre-computation as much as
possible in the computation of the CNN.

In order to demonstrate the utilization of the Caffe2C，
we have implemented four kinds of mobile CNN-based im-
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age recognition apps on iOS. Thus, we explain the flow of
construction of recognition app using Caffe2C.
To summarize it, our contributions in this paper are as

follows:

• We create a Caffe2C converter which converts the model
definition file and the parameter files of Caffe into a
single C code that can run on mobile devices．

• We explain the flow of construction of recognition app
using Caffe2C.

• We have implemented four kinds of mobile CNN-based
image recognition apps on iOS.

2. RELATED WORK
To use Deep Convolutional Neural Network (CNN) effi-

ciently on mobile devices the resources of which are limited
such as computational power and memory size, CNN on mo-
bile devices is actively being researched. [4, 8, 14] are works
on the ingenuity of the calculation of the convolution layer
that required the time of the majority of the processing.
Gong et al. [4] proposed to study a series of vector quan-

tization methods for compressing the parameters. For the
1000-category classification task in the ImageNet challenge,
they are able to achieve 16-24 times compression of the net-
work with only 1% loss of classification accuracy using the
state-of-the-art CNN.
Liu et al. [14] proposed efficient sparse matrix multipli-

cation algorithm on CPU for Sparse Convolutional Neural
Networks (SCNN) models. They apply the SCNN model to
the object detection problem, in conjunction with a cascade
model and sparse fully connected layers, to achieve signifi-
cant speed-up.
Jade et al. [8] proposed a method approximating a learned

full rank filter bank as combinations of a rank-1 filter ba-
sis. They demonstrate this method for scene text character
recognition, showing a possible 2.5× speedup with no loss
in accuracy, and 4.5× speedup with less than 1% drop in
accuracy, still achieving state-of-the-art on standard bench-
marks.
In addition, [3, 13] is a research of acceleration focusing

on the weight parameters according to the training.
Courbariaux et al. [3] proposed a method called “Bina-

ryConnect” which consists in training a DNN with binary
weights during the forward and backward propagations, while
retaining precision of the stored weights in which gradients
are accumulated.
Lin et al. [13] proposed a method called “quantized back

propagation” which converts multiplications into bit-shifts.
They show better performance than the previous studies of
BinaryConnect.
As mentioned above, there are majority studies related

to accelerate CNN. However, our recognition engine is suf-
ficiently fast. Therefore, we have determined that there is
no need of additional contrivance for our recognition engine,
especially, no need for accelerating recognition engine partic-
ularly. In addition, we use Network-In-Network(NIN) which
has no fully connected layer which accounts for 90% of the
parameters of the total number of parameters. Without pa-
rameter compression, the model size was 22MB which we
regarded as moderate size for mobile implementation, we
have determined that there is no need parameter compres-
sion.

3. CONSTRUCTION OF CNN-BASED MO-
BILE IMAGE RECOGNITION SYSTEM

In this chapter, we explain Caffe2C which converts the
model definition file and the parameter files of Caffe to
a single C language code that can run on mobile devices.
Moreover, we explain the flow of CNN-based mobile image
recognition application using Caffe2C.

3.1 Caffe2C
Caffe is the most common CNN framework which was

released at the earliest CNN rise. Although the parameter
files are generated after training using Caffe, it can not be
directly used in mobile devices. In order to use the learned
parameters by Caffe on mobile devices, it is necessary to
currently use Caffe for iOS/Android or the OpenCV DNN
class. However, they are not so efficiently optimized for
mobile devices that the execution speed is relatively slow.

In this study, we create a Caffe2C converter which con-
verts the model definition files and the parameter files into a
single C language code that can run on mobile devices. Since
Caffe2C generates a single C code which includes everything
needed to execute the trained CNN, Caffe2C makes it easy
to use deep learning on the C language operating environ-
ment. In the generated C code by Caffe2C, the CNN model
is represented as a C source code, which removes pursing of
the model definition files, and all the trained parameters are
embedded in the C source code as constant arrays. The gen-
erate code achieves faster execution speed in comparison to
the existing Caffe for IOS/Android and the OpenCV DNN
class. The reasons are as follows:

1. Caffe2C directly converts the Deep Neural Network to
a C source code.

2. Caffe2C effectively uses NEON/BLAS by multi-threading.

3. Caffe2C performs the pre-computation of the CNN as
much as possible to reduce the amount of online com-
putation.

Therefore, we can extend the applicability of CNN by us-
ing the Caffe2C. To train a CNN model in Caffe, we can
use a DIGITS which is a Web-based interface of Caffe pro-
vides a simple and easy solution to training a CNN model.
Hence, using both DIGITS for training CNN and Caffe2C
for conversion of model and parameter files make it easy to
use deep learning on mobile devices. In the next section,
we explain the flow of construction of recognition app using
Caffe2C.

3.2 Flow of Making Recognition Mobile Ap-
plication

The flow of making recognition mobile app is as follows.
From Step 1 to Step 5, if these steps are only once created,
it is possible to use repeatedly. Step 2 can easily train the
dataset if you use the DIGITS instead of Caffe framework.
Thus, if only Step 2 would be prepared, we can quickly and
easily create any recognition system on the mobile devices.
In addition, general versatility of implementation is high po-
tential capabilities because the parameter files that are au-
tomatically generated by the Caffe2C.



flow of making recognition mobile app� �
1. Prepare a training image data

2. Train a CNN model by Caffe (or DIGITS)

3. Generate a C source code by Caffe2C automati-
cally

4. Prepare a GUI code of mobile app

5. Generate CNN-based image recognition app by
compiling the generated C code and the GUI code� �

4. IMAGE RECOGNITION ENGINE
In this section, we explain a recognition engine used in

the mobile CNN-based image recognition applications in this
paper.

4.1 Basic recognition CNN architecture
As standard architectures of CNN for image recognition,

AlexNet [11], GoogleNet [18], VGG-16 [17], and Residual-
Net [5] are commonly used. However, mobile CNN imple-
mentation is limited in terms of application capacity such as
memory and computational costs. Therefore, we select the
Network-In-Network(NIN) [12] as a basic CNN architecture
for our recognition engine. NIN has no fully connected lay-
ers which needs a huge number of parameters in other CNNs
such as AlexNet and VGG-16. Figure 1 shows the NIN ar-
chitecture. Note that Caffe2C is not limited to only NIN
and can convert any kinds of CNNs into a C code.

Figure 1: Network-In-Network(quoted from [12]).
Composed of only Conv layer. Adding a BN [6] just
before the ReLU function of all layers.

Thus, the number of the total large-scale parameters of
AlexNet are about 62 million, but NIN are about 7.6million
which is relatively smaller than the others since NIN has no
fully connected layers. It has achieved a significant reduc-
tion of the number of parameters by using the NIN neural
network architecture. In addition, in this paper, we add
batch normalization (BN) [6] layers just after all the con-
volutional (Conv) layers and cascaded cross channel para-
metric pooling (CCCP) layers to the NIN architecture for
accelerating deep neural network training. Thus, recognition
performance is maintained at the same level of recognition
performance of AlexNet in 1000 class recognition. Table 1
shows the recognition performance of 1000 class. In view of
the mobile implementation, we consider that NIN architec-
ture is reasonable.
Using the NIN model, we pre-trained CNN with Ima-

geNet 2000 class images (totally 2.1 million images) which
consisted of ILSVRC2012 1000 class images and 1000 food-
related class selected from all the 21,000 ImageNet class.
Further, we fine-tuning CNN with each recognition target

dataset(food, general object 2000, bird, dog, etc.). More-
over, we use the Caffe [9] in training.

Finally, we convert training models at Caffe to an operable
C code in the iOS/Android environment by Caffe2C.

Table 1: Recognition performance of 1000 class in
AlexNet and NIN

param memory top-5
AlexNet 62million 248MB 95.1%

NIN(4 layer +BN) 5.5million 22MB 95.2 %
NIN(5 layer +BN) 15.8million 63MB 96.2 %

4.2 CNN acceleration method
To transfer the convolutional operation to matrix prod-

uct, we use the Im2col(image-to-column) operation which is
effectively a 3D array, into a 2D array that we can treat like
a matrix. Figure 2 shows visualizing Im2col operation.

Figure 2: Transfer convolutional operation to
GEMM

In the calculation of CNN, GEneral Matrix to Matrix Mul-
tiplication(GEMM) are frequently used, therefore, we use
the BLAS implementation of accelerate framework which is
highly optimized for the device in iOS. On the other hand,
we use the BLAS implementation of OpenBLAS in Android.

Moreover, We create your own GEMM routine using the
NEON instruction. The NEON is a Single Instruction Mul-
tiple Data (SIMD) instruction set of the ARM processor
that is the vector processing system that enables a single
instruction to process multiple pieces of data. The NEON
instructions calculate the four 32bit single-precision floating-
point at the same time. In addition, by the multi-processor,
it is possible to run a total of eight operations of iOS in
two CPU cores concurrency at the same time. Further, the
number of cores in the Android is generally four CPU cores,
therefore, total of 16 operations can run concurrently, it is
possible to accelerate the convolutional operation.

Note that the code for Im2col and GEMM operation are
includes in the C source code automatically generated by
Caffe2C.

In summary, acceleration method is as follows:

• BLAS implementation
(Accelerate Framework for iOS/OpenBLAS for An-
droid)

• NEON instruction (same both iOS and Android)



5. EXPERIMENTS
We performed the measurement of recognition time on the

iOS/Android. We evaluated the recognition time of both the
engine accelerated by BLAS and NEON as well.

5.1 Experimental settings
The recognition engine was speeded up by BLAS and

NEON implemented on the iOS and Android. We evaluated
the recognition time on the mobile devices. Experimental
settings are as follows:

• Implementation on the iOS accelerated by BLAS

• Implementation on the iOS accelerated by NEON

• Implementation on the Android accelerated by BLAS

• Implementation on the Android accelerated by NEON

5.2 Devices for evaluation
The used devices for evaluation are as follows:

• iPhone 7 Plus (CPU A10 2.33GHz 3GB DualCore iOS10)

• iPad Pro (CPU A9X 2.25GHz RAM4GB DualCore
iOS10)

• iPhone SE (CPU A9 1.85GHz RAM2GB DualCore
iOS10)

• GALAXY Note 3 (2.3GHz RAM3GB QuadCore An-
droid5.0)

5.3 Results
Table 2 shows average recognition time each implemen-

tation. We repeated recognition 20 times and averaged the
measured time. As a result, we revealed that BLAS was
better for iOS, while NEON was better for Android.

Table 2: Recognition time[ms]

NEON BLAS devices BLAS
iOS 181.0 55.7 iPhone 7 Plus Accelerate
iOS 222.4 66.0 iPad Pro Accelerate
iOS 251.8 79.9 iPhone SE Accelerate

Android 251 1652 GALAXY Note 3 OpenBLAS

6. MOBILE APPLICATIONS
In order to demonstrate the utilization of the Caffe2C，we

implemented four kinds of mobile CNN-based image recog-
nition apps on iOS. In this section, we explain six kinds
of mobile recognition app, DeepFoodCam, DeepBirdCam,
DeepDogCam, and DeepFlowerCam. The food recognition
app, DeepFoodCam, works on both Android/iOS, while the
others are implemented on only iOS.

6.1 DeepFoodCam
Figure 3 shows 101 class food recognition app, DeepFood-

Cam. Table 3 shows classification accuracy. This app can
recognize 101 classes including 100 food classes and one non-
food class. In the training time, we fine-tuned the CNN with
101 class images (totally 20,000 images) which consisted of
UECFOOD-100 [15, 21] class images and non-food images
collected from Twitter.

Figure 3: The screen-shot of DeepFoodCam. “Ra-
men noodle” was recognized.

Table 3: Classification accuracy of 101 food classes.
Note that Top-N means the ratio of that the top-N
candidates include the true classes.

top-1 top-5
food 101 class 74.5% 93.5%

6.2 DeepBirdCam
Figure 4 shows bird 200 class recognition app, DeepFood-

Cam. Table 4 shows classification accuracy. This app can
recognize 200 bird classes. In training, we fine-tuning CNN
with 6033 images of Caltech-UCSD Birds 200 Dataset [20].
For evaluation, we used 25 % images, while we used the rest
75% images for training.

Figure 4: The screen-shot of DeepBirdCam. “Song
sparrow” was recognized.

Table 4: Classification accuracy of 200 bird classes.
top-1 top-5

bird 200 class 55.8% 80.2%

6.3 DeepDogCam
Figure 5 shows dog 100 class recognition app, DeepDog-

Cam. Table 5 shows classification accuracy. This app can
recognize 100 dog classes. In training, we fine-tuning CNN
with 150 and over images per class of Stanford Dogs Dataset
Dataset [10]. For evaluation, we used 25 % images.



Figure 5: The screen-shot of DeepDogCam. “Mal-
tese dog” was recognized.

Table 5: Classification accuracy of 100 dog classes.
top-1 top-5

dog 100 class 69.0% 91.6%

6.4 DeepFlowerCam
Figure 6 shows flower 102 class recognition app, Deep-

FlowerCam. Table 6 shows classification accuracy. This app
can recognize 102 flower classes. In training, we fine-tuning
CNN with 80 and over images per class of 102 Category
Flower Dataset [16]. For evaluation, we used 25 % images.

Figure 6: The screen-shot of DeepFlowerCam. “Tus-
silago” was recognized.

Table 6: Classification accuracy of 102 flower classes.

top-1 top-5
flower 102 class 64.1% 85.8%

7. CONCLUSIONS
Caffe is widely used as a deep learning framework over the

world. In order to use the learned parameters by Caffe on
mobile devices, it is necessary to currently use Caffe for the
iOS/Android or the OpenCV DNN class. However, they are
not optimized for the mobile devices, and their execution
speed is relatively slow.
In this study, we create the Caffe2C converter to convert

the parameter files trained with Caffe to the C language code
that can be run on the mobile devices. Caffe2C achieved
fast execution speed in comparison to the existing Caffe for
IOS/Android and the OpenCV DNN class. In addition, we
have demonstrated the availability of Caffe2C through the
flow of making recognition mobile application using Caffe2C
and its automatically generated recognition codes.
For future work, we plan to apply our mobile framework

into real-time CNN-based mobile image processing such as

Neural Style Transfer [7]. Thereby, we plan to also create a
converter for other frameworks such as Chainer [19].
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