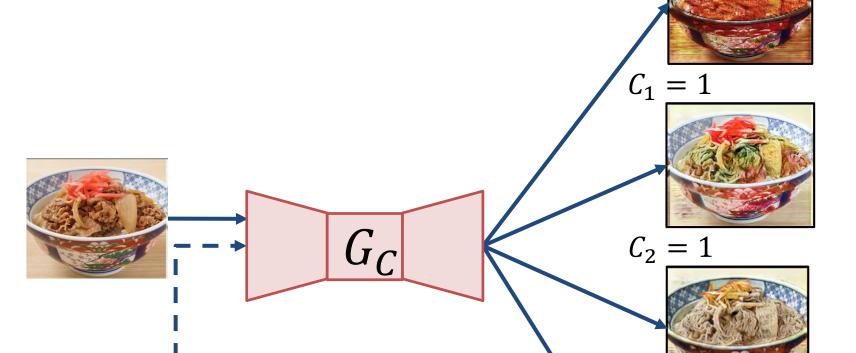
Food Category Transfer with Conditional Cycle GAN and a Large-scale Food Image Dataset


Daichi Horita Ryosuke Tanno Wataru Shimoda Keiji Yanai The University of Electro-Communications, Tokyo, Japan

Method Overview

Multi-Domain Image-to-Image Translation only to food area

-Based on a Conditional Cycle GAN (cCycle GAN) with a large-scale food image data collected from the Twitter Stream.

Our network

<u>Datasets</u>

-We use Two hundred and thirty thousand food images of ten kinds of typical Japanese foods, but we set restrictions on rice bowl.

	category	image number
$G_2 = 1$	chilled noodles	13,499
	meat spaghetti	7,138
	buckwheat noodle	$3,\!530$
	ramen	74,007
$C_0 C_1 C_2 \qquad C_n$	fried noodles	24,760
$- C \begin{bmatrix} c_0 & c_1 & c_2 & c_n \\ 0, & 0, & 1, & \dots, & 0 \end{bmatrix}$	white rice	21,324
\mathbf{V}	curry rice	34,216
Domain Select	beef bowl	18,396
One-hot Vector signal	eel bowl	5,329
	fried rice	27,854
	TOTAL	230,053

Food Image Generation using A Large Amount of Food Images with Conditional GAN: RamenGAN and RecipeGAN

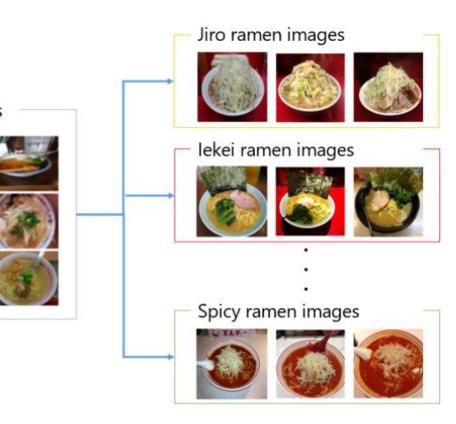
Yoshifumi Ito Wataru Shimoda Keiji Yanai The University of Electro-Communications, Tokyo, Japan

Method Overview

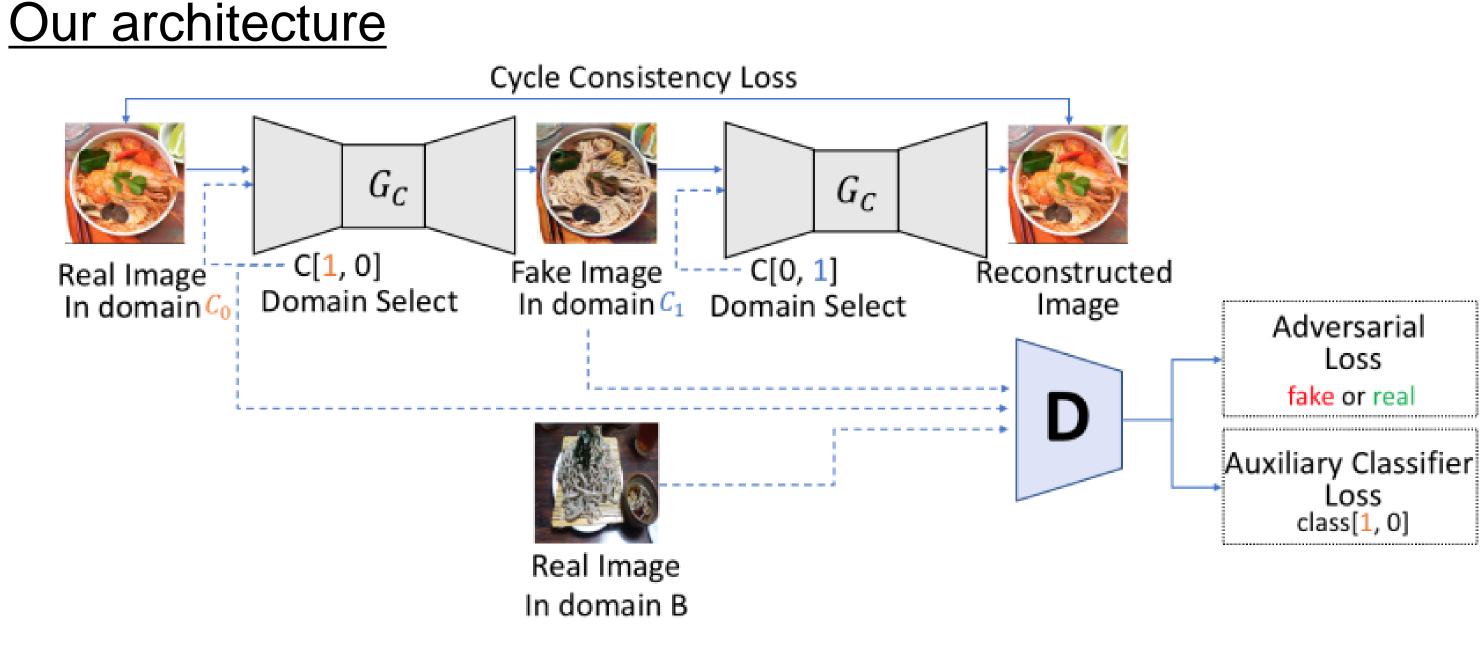
(1) Collecting labeled image.

(2) Conditional Generative Adversarial Network (cGAN).

(3) Improvement of cGAN with a dish plate discriminator and WGAN-GP.


(4) Training and image generation.

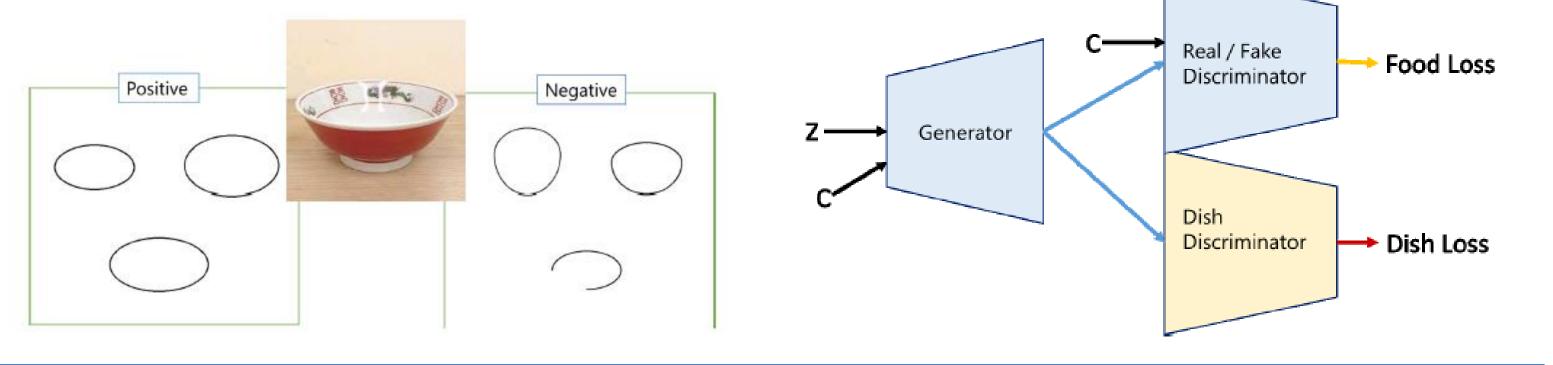
Improved Conditional GAN


Coniditonal GAN

-We used WGAN GP[2] as method of GAN

$$\min_{G} \max_{D} V(D,G) = \prod_{D} V(D,G)$$

Conditional CycleGAN


-We used StarGAN[1] architecture. Combining loss functions of [2] and [3].

 $E_x \sim p_{data}(x)[log D(x|c)]$ + $E_x \sim p_z(x)[log(1 - D(x|c))]$

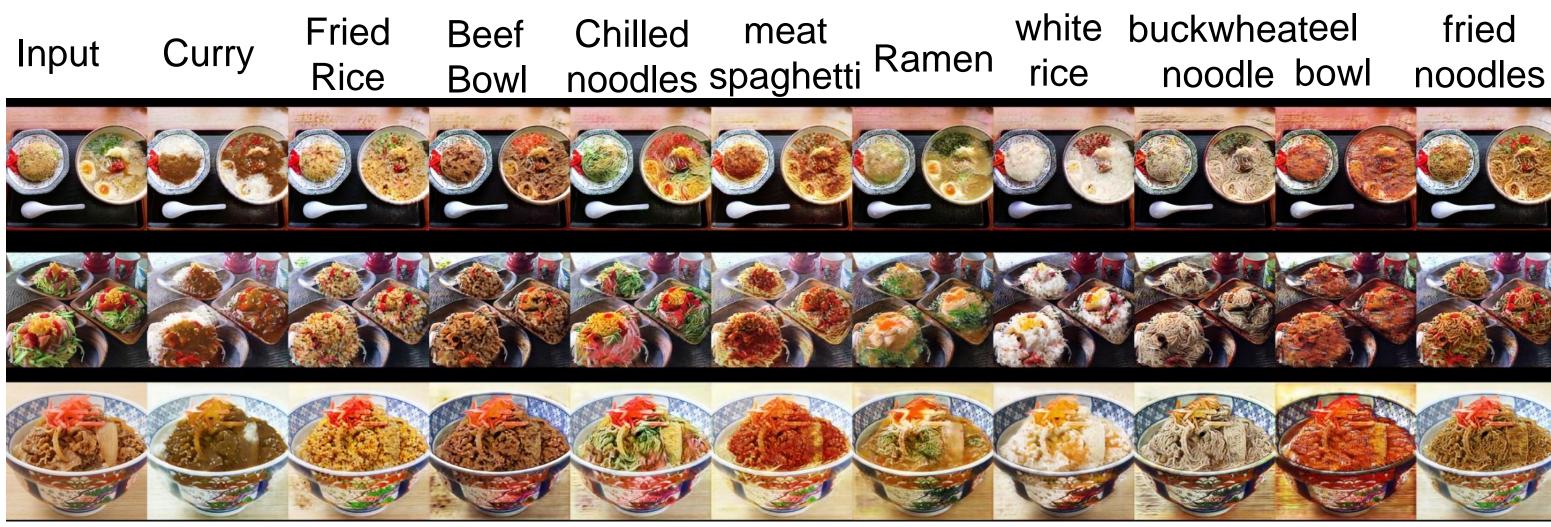
Discriminator of dish plate outline.

-We prepared an additional discriminator which is trained with oval figure -Single class classifier with complete oval images as positive samples and the other figure images as negative samples.

Experiments

Ramen GAN

-We trained Conditional GAN (cGAN) model with/without an additional discriminator of dish plates.


Conditional GAN

Improved Conditional GAN The 6 kind ramen category.

 $L_{acl}^{real} = \mathsf{E}[-log D_{acl}(c'|x)] \qquad L_{acl}^{fake} = \mathsf{E}_{x,c} \left[-log D_{acl}(c|G(x,c))\right]$ $L_{D} = L_{adv} + \lambda_{acl} L_{acl}^{real} \qquad L_{G} = L_{adv} + \lambda_{acl} L_{acl}^{real} + \lambda_{ccl} L_{ccl}$ $L_{ccl} = \mathsf{E}_{x,c,c'} ||x - G(G(x,c),c')||_{1}$

Experiments

We can translate only to food area.

Changes in quality due to differences of the number of total images.

Input10k / 230k100kFULL10k100kFULL

Recipe GAN

Category	Num
Plane ramen	790
Jiro ramen	5,901
Iekei ramen	2,836
Spicy ramen	3,578
Taiwan ramen	1,567
Onomichi ramen	1,228
TOTAL	15,900

-For Recipe GAN, we generated dish images from cooking ingredients. -Differ from the specific ramen image generation, image generation using recipe data is difficult due to the diversity of the dataset.

The 10 kind ingredient category.

Category	Num	Category	Num
Onion	$29,\!610$	bacon	7,978
Carrot	$22,\!450$	red pepper	5986
Tomato	18,229	tofu	9,540
green pepper	8,143	chicken	7,759
$\operatorname{mushroom}$	7,568	pork	10,427
		TOTAL	$127,\!690$

Future works

- -Translation with datasets which excluded constraint of food on rice bowl.
- -Translation to categories not included in the datasets.
- -Generate higher resolution images.

References

- [1] C.Yunjey et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. CVPR, 2018.
- [2] J. Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV, 2017.
- [3] A. Odena et al. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML, 2017

Recipes retrieval results with generated image

-We show image-based recipe search results which are retrieved by the generated images.

Quer

Search r

Improved Conditional GAN

Input ingredients Tomato + Chicken

トのてりやき!

+Tomato+Tohu

References

[1] F. Ahmed et al. Improved Training of Wasserstein GANs. NIPS, 2017.

[2] J. Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV, 2017.