

Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation

Takumi Ege, Yoshikazu Ando, Ryosuke Tanno, Wataru Shimoda and Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo

© 2017 UEC Tokyo.

Introduction

- Food calorie estimation
- Existing works
 - Associated with the estimated food categories
 - Require users to enter information such as size or volume
- Our works
 - Fully-automatic food calorie estimation

Review of our works

- (1) "CalorieCam"
 - reference-object-based food calorie estimation system.
- (2) Weakly-supervised segmentation based food calorie estimation
- (3) "AR DeepCalorieCam V2"
 - A real food size and calorie estimation system based on iOS ARKit.
- (4) "DepthCalorieCam" (new system)

- food calorie estimation system exploiting iPhone stereo cameras.

- (5) Rice grain based size estimation (new method)
 - uses rice grained the size of which are usually almost the same as a reference object.

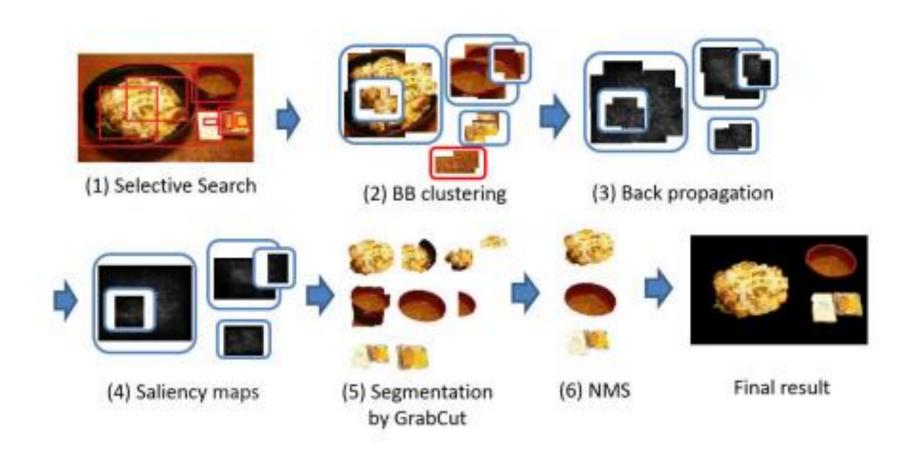
CalorieCam

- Image-based calorie estimation system
- User needs to register a size-known reference object
 - Wallet
 - Creditcard-size card

CalorieCam

- Segmentation
 - Food items
 - Pre-registered reference object.
- Real size of each detected food items
 Comparing the number of pixels
- Process
 - Estimate rough position based on edge detection
 - Apply color-pixel-based k-means clustering
 - Apply GrabCut with the detected bounding box

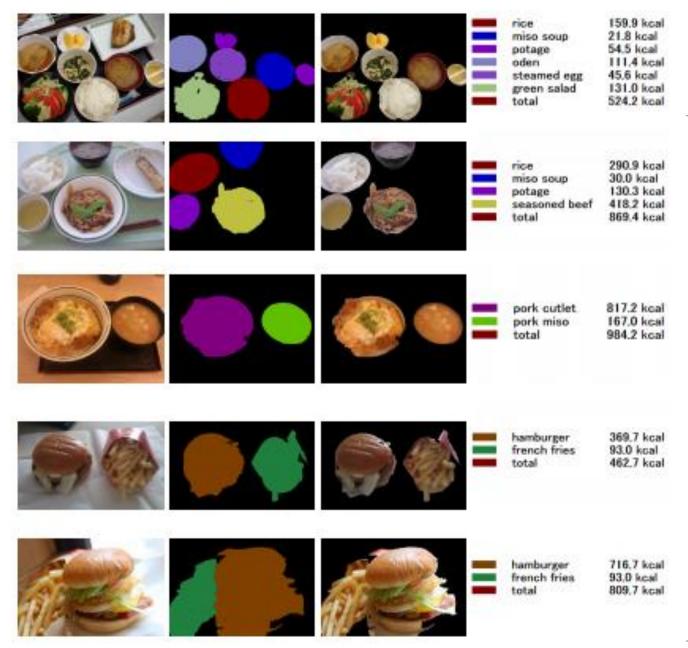
Weakly-supervised Segmentation Based Calorie Estimation


Calorie Cam

- One meal photo contains only one dish

- This work
 - Estimate calories from segmentation results.
 - Without multiple-view photos
 - Without specific reference objects such as wallets and cards.

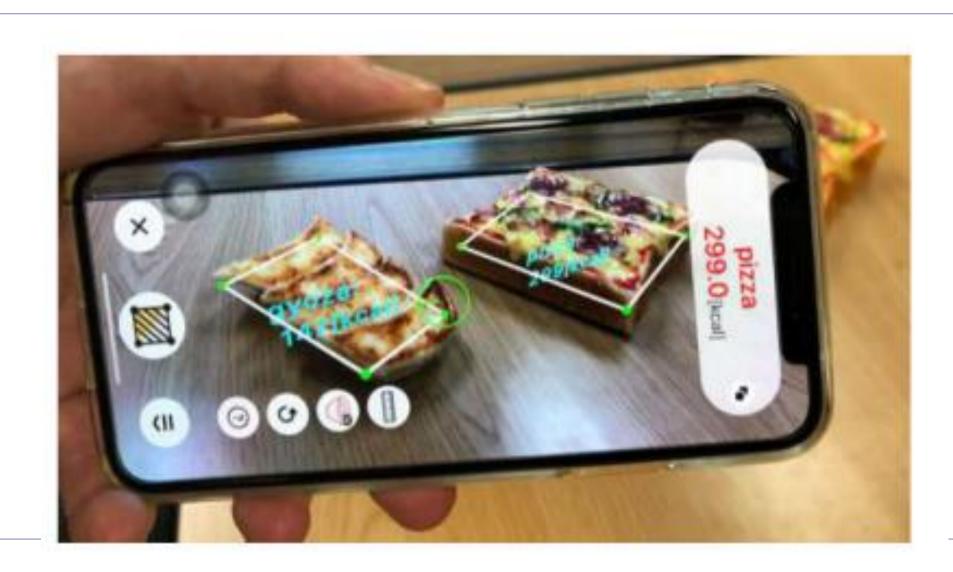
Weakly-supervised Segmentation Based Calorie Estimation



Weakly-supervised Segmentation Based Calorie Estimation

- Choose base food region
- We decide priorities based on a tendency of unchanging food volumes.
- Some food volumes change frequently, while some foods volume rarely change.
- In "Teishoku"
 - Japanese traditional food combo menu
 - we can often change the volume of "rice"
 - we cannot change "miso-soup" volume in general.

© 2017 UEC Tokyo.


AR DeepCalorieCam

• Uses an inertial sensor built in a standard smartphone in addition to photos

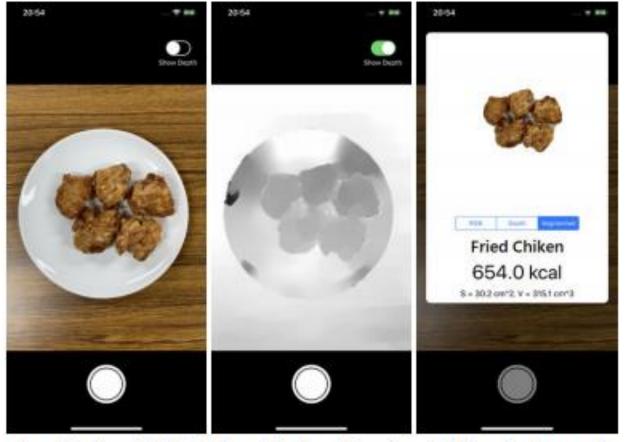
- Recognize a category of each food item.
- Directly calculate the size using AR
- Calculate food calories based on their

AR DeepCalorieCam

AR DeepCalorieCam

with iOS ARKit

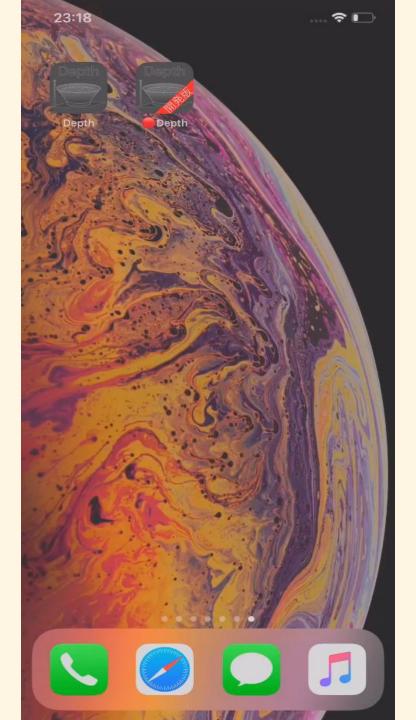
ARKit estimates real size of the bounding box.



「空気通信大学」

© 2019 UEC Tokyo.

DepthCalorieCam

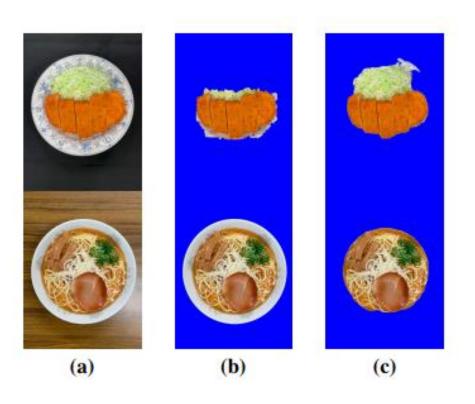

An obtained RGB An obtained depth image. v

Estimated result with calorie intake and segmented food region.

Croquette calorie estimation demo:

1 croquette =160kcal

2 croquette =320kcal


DepthCalorieCam

- Food regions are extracted by U-NET trained with UECFood-100 and segmentation mask sets.
- Estimate the depth of each of the pixels and their actual volumes.
- Calculate food calories from the actual volume and the regression curves

DepthCalorieCam

- CNN-based food region segmentation
 - Network
 - U-Net
 - Training
 - 5,301 masks
 - UECFOOD-100

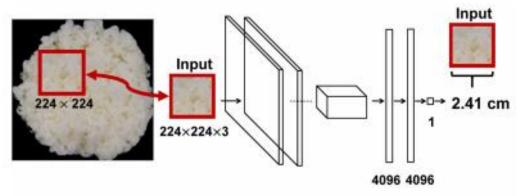
Comparative Experiments with CalorieCam and AR DeepCalorieCam V2

• Target

Pork with sweet Fried chicken. Croquette. and sour source.

category	calorie [kcal]	
pork with source	500	
fried chicken	655	
croquette	246	

Comparative Experiments with CalorieCam and AR DeepCalorieCam V2


Table 2. Comparison on calorie estimation error (Avg.±SD [kcal]) among CalorieCam [1], AR CalorieCam V2 [3] and DepthCalorieCam.

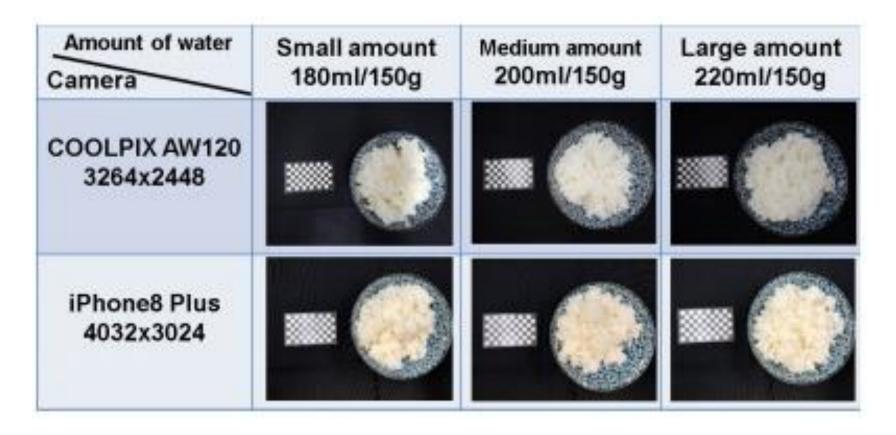
category	CalorieCam	AR CalorieCam	DepthCalorieCam
pork with source	364±552	-112±163	2±52
fried chicken	-123 ± 171	343±51	-5±64
croquette	-48 ± 16	-104 ± 12	-35 ± 22

Rice grain based size estimation

Proposed network

Conv layers (VGG16) Fc layers

• Examples of dataset



© 2017 UEC

Dataset

• 360 images

Experiments

• Training

• Evaluation

© 2017 UEC Tokyo.

Experiments

Evaluation data.	abs. err.(cm/224pixels)	
Camera:COOLPIX, Small amount of water	0.212	
Camera:COOLPIX, Medium amount of water	0.178	
Camera:COOLPIX, Large amount of water	0.197	
Camera: iPhone8 Plus, Small amount of water	0.127	
Camera: iPhone8 Plus, Medium amount of water	0.170	
Camera: iPnone8 Plus, Large amount of water	0.105	

rel. err.(%)	corr.	\leq 5% err.(%)	$\leq 10\%$ err.(%)	$\leq 20\%$ err.(%)
7.182	0.958	41.667	75.000	91.667
6.550	0.973	43.333	76.667	93.333
6.668	0.962	48.333	78.333	90.000
5.652	0.945	50.000	75.000	98.333
7.512	0.903	43.333	68.333	88.333
4.800	0.967	58.333	88.333	98.333

Conclusion

- DepthCalorieCam is the most promising approach.
- Large-scale calorieannotated 3D food volume data is needed to extend the system

 very costly and time-consuming.
- The rice grain based method is also promising
 Appropriate for Japanese foods