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Abstract

To minimize annotation costs associated with training of
semantic segmentation models, weakly-supervised segmen-
tation approaches have been extensively studied. In this
paper, we propose a novel method: Self-Supervised Differ-
ence Detection (SSDD) module which evaluates confidence
of each of the pixels of segmentation masks and integrate
highly confident pixels of two candidate masks.

1. Introduction
In this paper, we focus on avoiding performance degra-

dation by CRF. In the proposed method, we estimate confi-
dence maps on segmentation masks before and after apply-
ing CRF, and integrate them into a final mask by selecting
more confident pixels comparing both confident maps. To
estimate confidence maps of segmentation masks, we pro-
pose a Self-Supervised Difference Detection (SSDD) mod-
ule. SSDD contains a Difference Detection network (DD-
net), which estimates differences of the regions Since the
difference of segmentation masks can be obtained automat-
ically without any human supervision, we can train a DD-
net without any additional information. Thus, training of
DD-net can be considered as self-supervised learning.

It is hard to estimate complicate parts even if an input
region mask contains the regions to be estimated, while it
is easy to estimate simple parts. Then we regard an output
of a DD-net as confidence maps of difference between the
masks before or after a refinement process. By using the
confidence maps on mask difference, we pick up the pixels
having higher confidence from both the masks, and generate
re-refined segmentation masks.

In this paper, we demonstrate that the propose SSDD
module can be used in both the seed generation stage and
the training stage of fully-supervised segmentation as a “re-
refinement module”. In the seed generation stage, we refine
the CRF results of PSA [1] by a SSDD module. In the train-
ing stage, we introduce two SSDD modules inside training
loop of a fully-supervised segmentation network. In the ex-
periments, we demonstrate the effectiveness of SSDD mod-
ules in both stages. Especially, SSDD modules boosted the
performance of weakly-supervised semantic segmentation
on the PASCAL VOC 2012 dataset greatly and, achieved
new state-of-the-art.

2. Related Works
Region refinement for WSS results using CRF CRF [11]
can refine the ambiguous outlines using low-level features
such as a color of pixels. Chen et al. [13] and Pathak et
al. [14] adopted CRF as a post-processing method for re-
gion refinement and demonstrated the effectiveness of the
CRF for WSS. Kolesnikov et al. [10] proposed to use CRF
during training of a semantic segmentation model. Ahn
et al. [1] proposed a method to learn pixel-level similarity
from CRF results, and apply random walk based region re-
finement, which achieved the state-of-the-art on the Pascal
VOC 2012 dataset. We focus on preventing a segmentation
mask from being degraded by applying CRF.
Generating pixel-level labels during training of a fully-
supervised semantic segmentation (FSS) model Con-
strained Convolutional Neural Network (CCNN) [14] and
EM-adopt [13] generated pixel-level labels during training
using class labels and outputs of the segmentation model.
Wei et al. [25] proposed an online Prohibitive Segmenta-
tion Learning (PSL). that utilizes classification score and
the output of the segmentation model for generating mask
during training. Huang et al. [7] proposed Deep Seeded Re-
gion Growing (DSRG), which is a method to expand the
seed region during training. The authors prepared pixel-
level seed labels before training that have unlabeled regions
for unconsidered pixels. In this work, we proposed new
constraint for the generating pixel-level labels during train-
ing of a FSS model.

3. Method for “Re-refinement” of Refinement
In this paper, we focus on avoiding performance degra-

dation by refinement methods of segmentation masks such
as CRF. To do that, we propose a Self-Supervised Differ-
ence Detection (SSDD) module. Fig.1 shows the basic idea
of the processing in SSDD.
Difference Detection Network We denote one pair of seg-
mentation masks as (mbefore,mafter). Basically, we consider
mbefore is a raw segmentation mask and mafter is a processed
mask. We denote their difference regions by a binary mask
M before,after. The difference regions defined by:

M before,after

u =

{
1 if (mbefore

u = mafter
u )

0 if (mbefore
u 6= mafter

u )
, (1)

where u ∈ {1, 2, .., n} indicates a location of pixels, and
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Figure 1. Basic idea of “re-refinement” by Self-Supervised Dif-
ference Detection. (a) Segmentation masks before/after applying
CRF. (b) Confidence maps obtained by DD-Net. (c) Re-refined
mask which is integration of both masks based on confidence
maps.

Figure 2. Self-Supervised Difference Detection (SSDD) module.

Figure 3. Difference Detection Network (DD-Net).

n is the number of pixels. We use high level features
eh(x; θe) and low level features el(x; θe) x is an input
image and e is an embedding function parameterized by
θe. As shown in Fig.2, the confidence map of the input
mask, d, is generated by a Difference Detection network,
DDnet(eh(x; θe), e

l(x; θe), m̂; θd), d ∈ RH×W , where m̂
is a binarized mask with the same number of channels to the
target class number. The architecture of DD-Net is shown
in Fig.3.
Self-Supervised Difference Detection Module In this sec-
tion, we describe the detail of a SSDD module shown in
Fig.2. We suppose that an input mask which is difficult to
predict difference regions is relatively reliable. This insight
is based on an assumption that the overall processed masks,
mafter, have enough correct labels against error labels in dif-

ferent regions in the training phase.
We define confidence score w based on the difference

detection results between (dbefore and dafter). We calculate the
confidence score w for each pixel u as follows:

wbefore,after

u = (dafter

u + bbefore,after

mafter
u

)− (dbefore

u + bbefore,after

mbefore
u

) + b̂, (2)

where b̂ is a bias for a pair of masks, bbefore,after
c is a bias for a

class (c, c ∈ C ), and C is a set of image-level label. We add
the class bias bbefore,after

c for missing classes betweenmbefore and
mafter. In practice, we select missing classes after applying
CRF based on change ratio of pixels. We denote a num-
ber of pixels belonging to class c on mbefore as N before

c and a
number of pixels belonging to class c on mafter as N after

c . The
change ratio of pixels belonging to class c is calculated by:

δbefore,after

c = N after

c /N before

c . (3)

The class bias bc is represented using the change
ratio of pixels δbefore,after

c as follows: if δbefore,after
c >

th then bbefore,after
c =bCL else bbefore,after

c =0, where bCL is a bias
for missing classes and we simply set the threshold th to
0.5.

Finally, we obtain the refined mask mrefine using the con-
fident score w by:

mrefine

u =

{
mbefore
u if (wbefore,after

u > 0)

mafter
u if (wbefore,after

u < 0)
(4)

For simplicity, we denote this region refinement processing
by mrefine=SSDD(e(x; θe),m

before,mafter; θd).

4. Introducing SSDD modules into the process-
ing flow of WSS

Seed mask generation stage with static region refine-
ment Pixel-level Semantic Affinity (PSA) [1] is a method
to propagate label responses to nearby areas which belong
to the same semantic entity. In this section, we refine the
outputs of CRF in PSA by the proposed Self-Supervised
Difference Detection (SSDD) module.

We denote an input image as x and the proba-
bility maps obtained by PSA as ppsa=PSA(x; θP)
and its CRF results as pcrf0. We convert the prob-
ability maps (ppsa,pcrf0) to segmentation masks by
(mpsa= arg max

k∈Cy∪Cbg
ppsa

k ,m
crf0= arg max

k∈Cy∪Cbg
pcrf0

k ) , where

bg indicates a background class. The differ-
ence detection result for target M psa,crf0 is com-
puted by dpsa=f(eh(x; θe0), el(x; θe0), m̂psa; θd0),
dcrf0=f(eh(x; θe0), el(x; θe0), m̂crf0; θd0). From the dif-
ference detection results, we obtain a target refined
mask mssdd0 by the proposed SSDD module as follows:
mssdd0=SSDD(e(x; θe0),mpsa,mcrf0; θd0).

Suppose that σ() is sigmoid function and S is a set of
locations. The loss function for a Difference Detection net-



wort (DD-Net) is given by:

Lchange(d
psa, dcrf0,M psa,crf0) =

1

|S|
∑
u∈S

(J(M psa,crf0, dpsa, u)

+J(M psa,crf0, dcrf0, u)),
(5)

J(M
psa,crf0

, d
psa
, u) = M

psa,crf0
u log σ(d

psa

u ) + (1−M psa,crf0
u ) log(1− σ(dpsa

u )),

J(M
psa,crf0

, d
crf0
, u) = M

psa,crf0
u log σ(d

crf0

u ) + (1−M psa,crf0
u ) log(1− σ(dcrf0

u ))

Note that Mpsa,crf0 corresponds to Mbefore,after in Eq.(1).
The proposed method is not effective in the cases that either
or both of the segmentation masks has no correct labels.
We exclude the bad training samples by simple processing.
and define it by the change ratio of pixels δ. We calcu-
late the change ratio δpsa,crf0

c in the same manner to Eq.(3)
and obtain the decisions γpsa,crf0

c for the bad training sam-
ples by: if δpsa,crf0

c > 0.5 then γpsa,crf0
c =1 else γpsa,crf0

c =0. The in-
terpolated loss function Lchange as follows: if |

∑
k∈Cy

γ
psa,crf0
k | >

0 then Lchange=0 else Lchange=Lchange. C is a set of class and Cy ∈ C
is a set of category C for image-level label y.

We also train embedding function θe0 by training a seg-
mentation network with mpsa as follows:

Lseg = − 1∑
k∈C

|Spsa

k |

∑
k∈C

∑
u∈Spsa

k

log(hku(x; θs0)), (6)

where Spsa

k is a set of locations that belong to class k on the
mask mpsa. Final loss function for static region refinement
using difference detection is given by:

Lstatic = Lseg + Lchange (7)

Training stage of a fully-supervised segmentation model
with dynamic region refinement In this work, we pro-
pose a novel approach to constrain interpolation of the seed
labels during training of a segmentation model. The idea
of the constraint is to limit interpolation of seed labels to
only predictable regions of the difference be-tween newly
generated pixel-level labels and seed labels.

In the first step, for an input image x, we obtain outputs
of a segmentation model pseg=g(x; θs1) and its CRF out-
puts pcrf1, where g is a function of the segmentation model.
We convert them to segmentation masks (mseg= arg max

k∈Cy∪Cbg
pseg

k ,

mcrf1= arg max
k∈Cy∪Cbg

pcrf1

k ). Then, we obtain refined pixel-level labels

mssdd1 by applying the proposed refinement method as fol-
lows: mssdd1=SSDD(e(x; θe1),m

seg,mcrf1; θd1). In the second step,
we apply the proposed method to the obtained mask mssdd1

and seed labels mssdd0. The further refined mask mssdd2 is
obtained by mssdd2=SSDD(e(x; θe1),mssdd1,mssdd0; θd2). We
generate the mask mssdd2 in each iteration and train the seg-
mentation model using the generated mask mssdd2.

We train the semantic segmentation model with the gen-
erated mask mssdd2 by:

Lseg-main = − 1∑
k∈C

|Sssdd2

k |

∑
k∈C

∑
u∈Sssdd2

k

log(hku(x; θs1)). (8)

The difference detection network (DD-net) between mseg

and mcrf1 is optimized by a below loss:

Ldd-crf (d
seg, dcrf1,M seg,crf1) =

1

|S|
∑
u∈S

(J(M seg,crf1, dseg, u)

+J(M seg,crf1, dcrf1, u)),

(9)

J(M
seg,crf1

, d
seg
, u) = M

seg,crf1
u log σ(d

seg

u ) + (1−M seg,crf1
u ) log(1− σ(dseg

u )),

J(M
seg,crf1

, d
crf1
, u) = M

seg,crf1
u log σ(d

crf1

u ) + (1−M seg,crf1
u ) log(1− σ(dcrf1

u )).

In the similar manner to Sec.4, in the second stage, we
also exclude bad samples based on the change ratio of pix-
els. We define the interpolated loss function Ldd-crf for the
pair of masks (mseg, mcrf1) by applying below processing.
If |

∑
γseg,crf1

k | > 0 then Ldd-crf = 0 else Ldd-crf = Ldd-crf .
We explain about the training of the DD-net for (mssdd1,

mssdd0). The difference detection between mssdd1 and mssdd0 is
an easy task because the seed masks mssdd0 are always con-
stant during training. To avoid the problem, we add a new
segmentation branch to a segmentation network, which is
also trained with the pixel-level seed labels mssdd0. We ob-
tain segmentation probability maps from this branch psub and
convert the map to mask by msub= arg max

k∈Cy∪Cbg
psub. We train

the difference detection network, DD-net, to predict the dif-
ference of the pair of masks (mssdd0, msub) and (msub, mssdd1).
This replacing of the mask makes it hard to predict the dif-
ference between mssdd0 and mssdd1 because the situation of
training and inference become different. We denote the loss
function for the difference detection in this case as follows:

Ldd-seed(d
ssdd0, dssdd1,M ssdd0,ssdd1) =

1

|S|
∑
u∈S

(J(M ssdd0,sub, dssdd0, u)

+J(M ssdd1,sub, dssdd1, u)),
(10)

J(M
ssdd0,sub

, d
ssdd0
, u) = M

ssdd0,sub
u log σ(d

ssdd0

u )+(1−M ssdd0,sub
u ) log(1−σ(dssdd0

u ))

J(M
ssdd1,sub

, d
ssdd1
, u) = M

ssdd1,sub
u log σ(d

ssdd1

u )+(1−M ssdd1,sub
u ) log(1−σ(dssdd1

u )).

The parameter θs1′ of the new segmentation branch is
trained by:

Lseg-sub = αLssdd0 + (1− α)Lssdd2, (11)

Lssdd0
= −

1∑
k∈C
|Sssdd0

k |

∑
k∈C

∑
u∈Sssdd0

k

log(h
k
u(x; θs1′ ))

Lssdd2
= −

1∑
k∈C
|Sssdd2

k |

∑
k∈C

∑
u∈Sssdd2

k

log(h
k
u(x; θs1′ )).

α is a hyper parameter of the mixing ratio of Lssdd0 and Lssdd2.
The final loss function of the proposed dynamic region

refinement method is calculated as below:

Ldynamic = Ldd-crf + Ldd-seed + Lseg-main + Lseg-sub. (12)



Table 1. Results on PASCAL VOC 2012 val set.
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PSA [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
SSDD 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
Gain +0.8 -5.7 -1.7 +2.6 +3.3 -1.5 -0.2 +7.6 +11.9 +5.0 +17.7 +7.4 +3.7 +15.0 +3.5 -4.1 -12.7 +13.3 +0.6 -0.1 +1.8 +3.2

Table 2. Comparison with WSS
methods w/o additional supervi-
sion.

Method Val Test
FCN-MIL [15]ICLR2015 25.7 24.9
CCNN [14]ICCV2015 35.3 35.6
EM-Adapt [13]ICCV2015 38.2 39.6
DCSM [22]ECCV2016 44.1 45.1
BFBP [19]ECCV2016 46.6 48.0
SEC [10]ECCV2016 50.7 51.7
CBTS [18]CVPR2017 52.8 53.7
TPL [9]ICCV2017 53.1 53.8
MEFF [4]CVPR2018 - 55.6
PSA [1]CVPR2018 61.7 63.7
PSA (Re-implementation) 59.0 -
SSDD (Static) 61.4 -
SSDD (Dynamic) 64.9 65.5

Table 3. Comparison with WSS methods w/ addi-
tional supervision.

Method Additional supervision Val Test
MIL-seg [16]CVPR2015 Saliency mask + Imagenet images 42.0 40.6
MCNN [23]ICCV2015 Web videos 38.1 39.8
AFF [17]ECCV2016 Saliency mask 54.3 55.5
STC [26]PAMI2017 Saliency mask + Web images 49.8 51.2
Oh et al. [20]CVPR2017 Saliency mask 55.7 56.7
AE-PSL [25]CVPR2017 Saliency mask 55.0 55.7
Hong et al. [5]CVPR2017 Web videos 58.1 58.7
WebS-i2 [8]CVPR2017 Web images 53.4 55.3
DCSP [2]BMVC2017 Saliency mask 60.8 61.9
GAIN [12]CVPR2018 Saliency mask 55.3 56.8
MDC [27]CVPR2018 Saliency mask 60.4 60.8
MCOF [24]CVPR2018 Saliency mask 60.3 61.2
DSRG [7]CVPR2018 Saliency mask 61.4 63.2
Shen et al. [21]CVPR2018 Web images 63.0 63.9
SeeNet [6]NIPS2018 Saliency mask 63.1 62.8
AISI [3]ECCV2018 Instance saliency mask 63.6 64.5
SSDD (Dynamic) - 64.9 65.5

5. Experiments

We evaluated the proposed methods using the PASCAL
VOC 2012 data. For calculating the mean IoU on val and
test sets, We used the official evaluation server.

Implementation details Our experiments are heavily based
on previous work [1]. For the generating results of PSA, we
used implementations provided by the authors that are pub-
licly available. We followed the paper [1] and set hyperpa-
rameters that achieved the best performance in their paper.
As segmentation model we used a ResNet-38 model, which
is almost the same to the architecture used in [1] except for
upsampling rate. We explore good hyperparameters in the
proposed method by grid search.

Comparison Table 1 shows the comparison of dynamic re-
gion refinement method with PSA. We denote the dynamic
region refinement as “SSDD” in all the tables. We observe
that the proposed method outperforms PSA with over 3.2
point margin. In Table 1, we show the gains between the
proposed method and PSA for detailed analysis as well.

Table 2 shows the results of the proposed method and re-
cent weakly supervised segmentation methods that use no
additional supervisions on PASCAL VOC 2012 validation
data and PASCAL VOC 2012 test data. We observe that
our method achieves the highest score compared with all
the existing methods, which use the same types of supervi-
sion [14, 13, 22, 19, 10, 9, 18, 4, 1].

Table 3 shows the comparison of the proposed method
with some weakly supervised segmentation methods, which
employ relatively cheap additional information. Though
completely fair comparisons for them are difficult because
of the difference of network model, augmentation tech-
nique, the number of iteration epochs and so on, the
proposed method demonstrates comparable or better per-
formance without any additional information for training.
Fig.4 shows the examples of difference detection results and
Fig.5 shows the examples of semantic segmentation results.

(a) (b) (c) (d) (e) (f) (g)

Figure 4. For each row, from the left, (a) input images, (b) Raw
PSA segmentation masks, (c) Difference detection maps of (b), (d)
CRF masks of (b), (e) Difference detection maps of (d), (f) Refined
segmentation masks by the proposed method and (g) Ground truth
masks. Two bottom rows show failure cases.

Inputs
PSA

(Re-implementation)
(59.0%)

SSDD(Static)
(61.4%)

SSDD(Dynamic)
(64.9%) Ground truth

Figure 5. Segmentation examples of results on Pascal VOC 2012.

6. Conclusion
In this paper, we proposed a novel method to refine a seg-

mentation mask from a pair of segmentation masks before
and after refinement process such as CRF by the proposed
SSDD module. We demonstrated the proposed method can
be used effectively in two stages: static region refinement in
the seed generation stage, and dynamic region refinement in
the training stage.
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