Self-supervised Difference Detection for Refinement CRF and Seed Interpolation

Wataru Shimoda Keiji Yanai

The University of Electro-Communications, Tokyo, Japan

Objective

Weakly supervised segmentation

- Use only image-level annotation and generate segmentation masks

Evaluation of input masks for integrations

Modeling the decision process about whether to use the adviser's opinion

Decision by own principles

Make low confidence on pixels predicted by large differences between the input feature maps and segmentation masks Decision taking into consideration the opinions of other advisors

Make low confidence on pixels predicted by learning similar training samples

-In both of decisions, high value (highlighted by white) indicates low confidence

Calculation of confidence scores - Bias \hat{b} is for making gap between decisions - Bias b_m is for missing class labels in results $\begin{array}{l} \text{Mask integration} \\ \text{based on the confidence scores} \\ m_u^{refine} \begin{cases} m_u^{before} & \text{if} \left(w_u^{before,after} \geq 0 \right) \\ m_u^{after} & \text{if} \left(w_u^{before,after} < 0 \right) \end{cases} \end{array}$

Motivation

- CRF is a good refinement method but it often degrades the results due to unstable unary terms in weakly supervised segmentation

Our motivation is to use CRF results as not teacher but adviser
In our situation, we suppose advisers give us noisy information

To utilize information from advisers

-We consider that many people first determine whether it is against their principles, and utilize opinions of other advisors for problems that are difficult to judge

-We model this scheme by difference detection task

Overview

Overview of Difference Detection Network(DD-Net)

 $\mathbf{w}_{u}^{\text{before}} = \left(d_{u}^{after} + b_{m_{u}^{after}}\right) - \left(d_{u}^{before} + b_{m_{u}^{before}}\right) + \hat{b}$

 $\hat{b} = 0.4$ $b_{m_u} = 1.0$ if $(N_c^{after} / N_c^{before} > 0.5, m_u = c)$ N is number of pixels which belongs to category $c \in label$ in an image. We denote this integration process as SSDD module by a below equation

 $m^{refine} = SSDD(e(x; \theta_e), m^{before}, m^{after}; \theta_d)$

Static region refinement

Loss for difference detection in PSA and CRF

 $L_{change} = \frac{1}{|S|} \sum_{u \in S} (J(M^{psa,crf0}, d^{psa}, u) + J(M^{psa,crf0}, d^{crf0}, u))$

Loss for segmentation network for obtaining good representation from backbone network

$$L_{seg} = L_{mask}(m^{psa}; \theta_{seg}), \quad L_{mask}(m^{mask}; \theta) = \frac{1}{\sum_{k \in C} |S^{mask}|} \sum_{k \in C_u} \sum_{u \in S_u^{mask}} \log(h_u^k(x; \theta))$$

Final loss

 $L_{static} = L_{seg} + L_{change}$

Dynamic region refinement

Losses for difference detection

 $L_{dd-crf} = \frac{1}{|S|} \sum_{u \in S} (J(M^{seg, crf_1}, d^{seg}, u) + J(M^{seg, crf_1}, d^{crf_1}, u))$

 $L_{dd-seed} = \frac{1}{|S|} \sum_{u \in S} (J(M^{ssdd0,sub}, d^{ssdd0}, u) + J(M^{ssdd1,sub}, d^{ssdd1}, u))$

Losses for segmentation network

-Training

Train a difference detection model using difference regions between raw segmentation masks generated by PSA[1] and its CRF results **-Inference**

Integrate a pair of mask using DD-net outputs

Difference detection network

$L_{seg-main} = L_{mask} (m^{ssdd2}; \theta_{s0})$ $L_{seg-sub} = \alpha L^{ssdd0} + (1 - \alpha) L^{ssdd2}$
$L^{ssdd0} = L_{mask}(m^{ssdd0}; \theta_{s1}), L^{ssdd2} = L_{mask}(m^{ssdd2}; \theta_{s1})$
Final loss $L_{dynamic} = L_{dd-crf} + L_{dd-seed} + L_{seg-main} + L_{seg-sub}$

Experiments

- Dataset: Pascal VOC 2012 dataset
- Evaluation metric: mean IoU

C	Comparison with WSS methods w/o additional supervision.								
	Method	Raw seed (Train set)	Trained seg model (Val set)						
	PSA (re-implementation)	52.5	58.4						
	PSA+CRF(re-implementation)	48.0	59.0						
	Static region refinement	53.4	61.4						

Comparison with WSS methods w/o additional supervision.

	Method	ls			Va	l set	Test	set			С
	FCN-M	IL(ICLR	2015)			25.7	24	1.9] [Math	
	CCNN(ICCV20	15)			35.3	35	5.6			
	EM-Ad	apt(ICC)	V2015)			38.2	39	9.6			
	DCSM	(ECCV2	016)		4	14.1	45	5.1			<u>(</u> ר <u>ר</u>
	BFBP(I	ECCV20)16)		4	46.6	48	3.0		Hon	
	SEC (E	CCV20	16)		Ę	50.7	51	.7		DSR	<u>y et</u> 2G (1
	TPL(IC	CV2016	5)		Ę	53.1	53	8.8		Shei	<u>n et</u>
	CBTS(CVPR20)17)		Ę	52.8	53	8.7		Seel	Net(
	PSA(C	VPR201	8)		6	61.7	63	8.7		AISI	(EC
	Static r	egion re	finemen	t	(61.4		-		SSD	D(p
	Dynam	ic regior	n refinem	nent	(64.9	65	5.5			
	(a)	(b)		(d)		(e)					
Fo (c)	or each row Difference	v, from th ce detection	e left, (a) i on maps of	nput ir f (b), (d	mag d) Cl	es, (b) R RF mask	aw PS s of (b	A segn), (e) D	nentat	ion m	asks,
an	nd (g) Grou	und truth	masks. Tw	o botte	omi	rows sho	ow fail	ure cas	Ses.		

Results on PASCAL VOC 2012 val set.

Meth ods	BG	Aero	Bike	Bird	Boat	Bottl e	Bus	Car	Cat	chair	Cow
PSA[1]	88.2	68.2	30.6	81.1	49.6	61.0	77.8	66.1	75.1	29.0	66.0
SSDD	89.0	62.5	28.9	83.7	52.9	59.5	77.6	73.7	87.0	34.0	83.7
Gain	+0.8	-5.7	-1.7	+2.6	+3.3	-1.5	-0.2	+7.6	+11.9	+5.0	+17.7
	Table	Dog	Horse	Motor	Person	Plant	Sheep	Sofa	Train	Tv	mloU
PSA[1]	40.2	80.4	62.0	70.4	73.7	42.5	70.7	42.6	68.1	51.6	61.7
SSDD	47.6	84.1	77.0	73.9	69.6	29.8	84.0	43.2	68.0	53.4	64.9
Gain	+7.4	+3.7	+15.0	+3.5	-4.1	-12.7	+13.3	+0.6	-0.1	+1.8	+3.2

Comparison with WSS methods w/additional supervision.

Methods	Additional information	Val set	Test set
MIL-seg(CVPR2015)	Saliency mask + Imagenet images	42.0	40.6
STC (PAMI2017)	Saliency mask + Web images	49.8	51.2
AE-PSL(CVPR2017)	Saliency mask	55.0	55.7
Hong et al. CVPR2017	Web videos	58.1	58.7
DSRG (CVPR2018)	Saliency mask	61.4	63.2
Shen et al. (CVPR2018)	Web images	63.0	63.9
SeeNet(NIPS2018)	Saliency mask	63.1	62.8
AISI(ECCV2018)	Instance saliency mask	63.6	64.5
SSDD(proposed)	-	64.9	65.5

- $d^{before} = DDnet(e^{h}(x), e^{l}(x), m_{u}^{before})$ $d^{after} = DDnet(e^{h}(x), e^{l}(x), m_{u}^{before})$

References

[1] Jiwoon Ahn, Suha Kwak : Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018