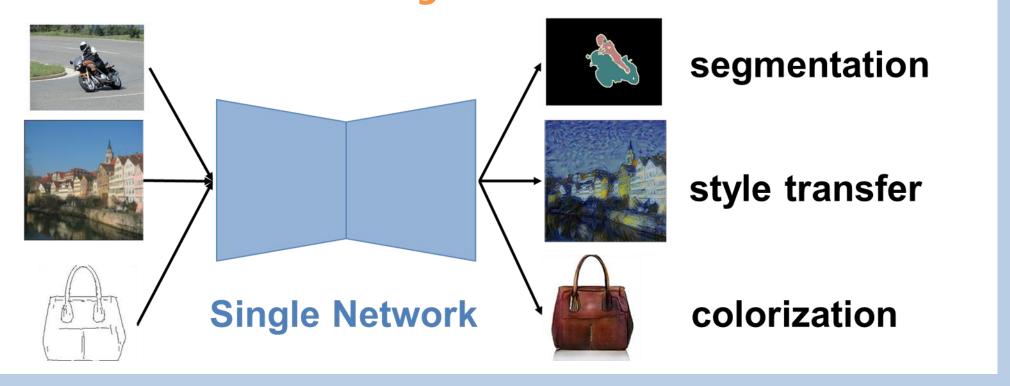
ACPR ID-103

Continual Learning of An Image Transformation Network Using Task-dependent Weight Selection Masks

The University of Electro-Communications, Tokyo Keiji Yanai Asato Matsumoto

Target:

nodel (a)'s esponse for


old tasks

new task ound truth

Low error for task 2 Low error for task 1

Objective

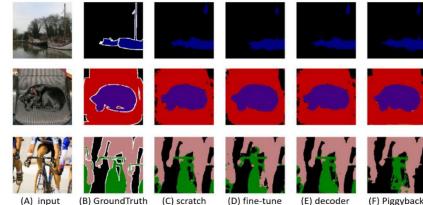
Continual Learning of An Image Transformation Network for heterogeneous tasks

Related Work

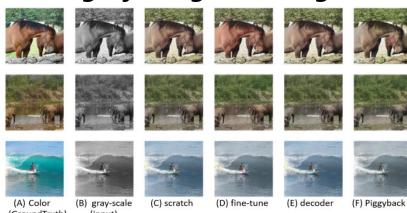
Simultaneous training of multiple tasks

- Single encoder & task-specific decoders e.g. UberNet [Ikkinos CVPR2017]
- Multiple inputs & multiple outputs e.g. One Model To Learn Them All [Kaiser et al. arXiv 2017]

Experiment


Apply Piggyback to image-to-image tasks

• 6 tasks to be learned continuously Task2: semantic segmentation

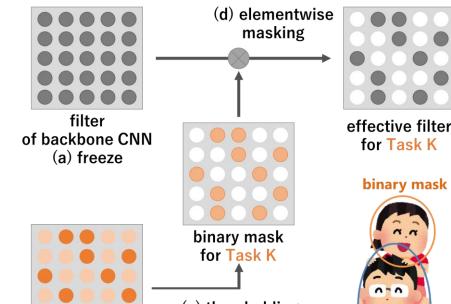

task number	task category	dataset	evaluation	
Task 1	semantic segmentation	MS COCO	mloU(%)	
Task 2	semantic segmentation	Pascal VOC 2012	mloU(%)	
Task 3	gray image coloring	MS COCO	SSIM	
Task 4	style transfer (Gogh)	MS COCO	SSIM	
Task 5	style transfer (Munk)	MS COCO	loss	
Task 6	edge image coloring	edges2handbags	MSE	

• Result

"Piggyback" is effective for Encoder-Decoder net

Task3: gray image coloring

Continual learning (approaches for overcoming "catastrophic forgetting")


- Rehearsal [Hetherington et al. 1989]
- train new samples with old samples • Distillation Learning without Forgetting [Li and Hoiem 2016] reproduce training labels of old tasks with trained model and use them for new trainig
- **Regularization** Elastic Weight Consolidation [Kirkpatrick et al. 2016] train weights for new tasks according to un-importantness of weights
- **Pruning** PackNet [Mallya et al. CVPR2018] fix trained weight for previous tasks and pruning un-important weights
- Weight Selection Piggyback [Mallya et al. ECCV2018] select task-specific weights from the fixed backbone network In this work, we adapt "Piggyback" as a basic approach.

Method : Piggyback [Mallya et al. ECCV 2018]

Use task-dependent weight selection masks.

No catastrophic forgetting happen with small additional binary masks and task-specific final layers.

- (1) For the first, train and fix the weight of backbone network
- (2) For the second task or more, train mask weights and obtain the task-specific mask
- (3) At evaluation time, use effective filter by element-wise masking

Dataset	Classifier Only	$\begin{array}{c} \mathbf{PackI} \\ \downarrow \end{array}$	Net [7] ↑	Piggyback (ours)	Individual Networks
ImageNet	28.42	29.33		28.42	28.42
	(9.61)	(9.99)		(9.61)	(9.61)
CUBS	36.49	22.30	29.69	20.99	21.30
Stanford Cars	54.66	15.81	21.66	11.87	12.49
Flowers	20.01	10.33	10.25	7.19	7.35
WikiArt	49.53	32.80	31.48	29.91	29.84
Sketch	58.53	28.62	24.88	22.70	23.54
# Models (Size)	1 (537 MB)	1 (58	7 MB)	1 (621 MB)	6 (3,222 MB

LWF Input:

EWC

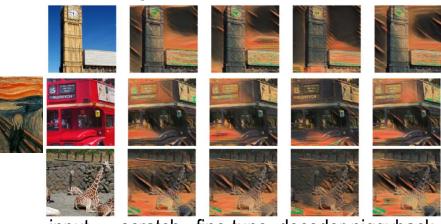
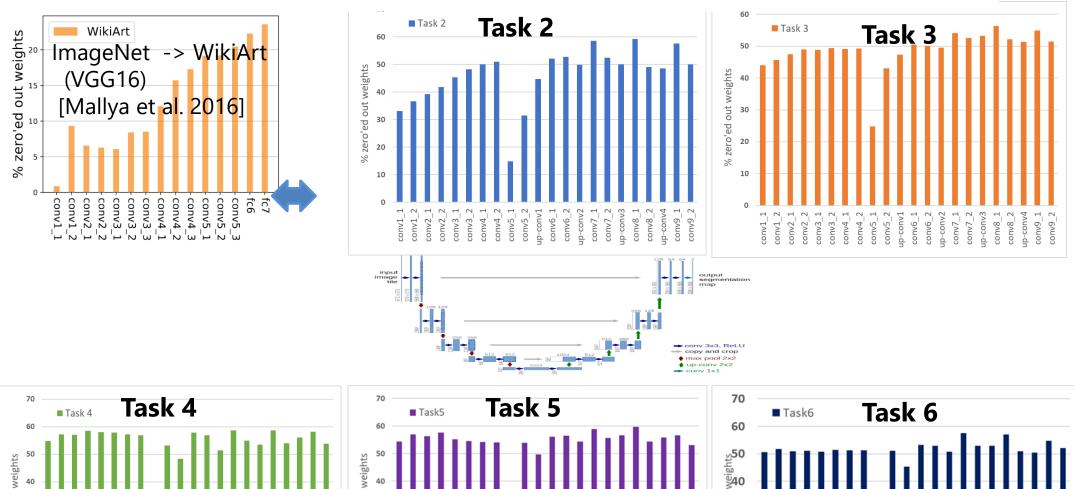
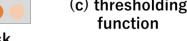

PackNet

Table 2: Errors obtained by starting from an ImageNet-trained VGG-16 net

	scratch	fine-tune	decoder	Piggyback		
Task 1 (mloU(%))	21.47					
Task 2 (mloU(%))	58.59	64.87	61.63	61.45		
Task 3 (SSIM)	0.9138	0.9148	0.9121	0.9058		
Task 4 (SSIM)	0.3678	0.3555	0.3595	0.3501		
Task 5 (total loss)	447480	490490	544348	521476		
Task 6 (MSE)	211.96	207.76	237.53	232.02		
Task 1 after Task 2	-	getting 0.70	.1.47	21.47		
Task 2 after Task 3	-	0.70 getting 1.87 0.5321	Director 1.63	61.45		
Task 3 after Task 4	-	0.5321	0.9121	0.9058		
Model Size (MB)	338.4 (56.4*6)	338.4 (56.4*6)	158.9 (56.4+20.5*5)	65.4 (56.4+1.8*5)		

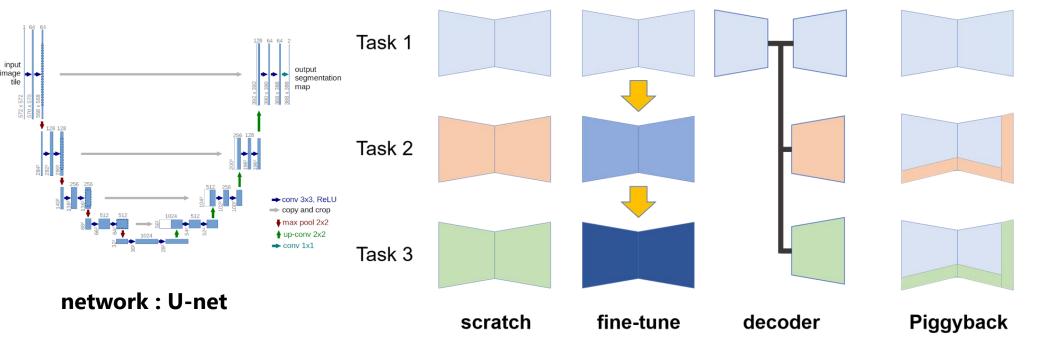
Task5: style transfer (Munk)




scratch fine-tune decoder piggyback Task6: edge image coloring

The ratio of Zero'ed out weights

the zero'ed out weights of image translation is higher than classification



work and then using various methods to learn new fine-grained classification

Baselines

independent model Scratch **Fine-tune** fine-tune a single identical network Decoder shared encoder and task-dependent decoder adapt Piggyback to encoder-decoder network Piggyback

• The similarity matrix between binary masks (a ratio of same value)

	Task 1 segmentation	Task 2 segmentation	Task 3 gray coloring	Task 4 style transfer	Task 5 style transfer	Task 6 edge coloring
Task 2	0.5075	-	-	-	-	-
Task 3	0.5042	0.5054	-	-	-	-
Task 4	0.4326	0.5034	0.5020	-	-	-
Task 5	0.4529	0.5029	0.5025	0.5210	-	-
Task 6	0.4847	0.5063	0.5026	0.5093	0.5077	-

Future work

- Reducing the size of binary mask
- Analyzing the trained mask