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Motivation
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– Results of Neural Style Transfer methods to translate object materials 
rely on the style picture chosen to modify the content image

– Automatically find the ideal style image that better translates the 
material of an object

Content Image Translated images with different materials
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Objective
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• Objective:  
– Automatically find the ideal style image based on its discrimination level 

and its relation with the content image in terms of semantic information

• Approach:  
– An image retrieval method based on the most discriminative candidate style 

images, and evaluate the semantic similarity with the content using IN

NST
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Neural Style Transfer
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– NST* exploits CNN feature activations to recombine the content of a 
given photo and the style of artworks
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Instance Normalization
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– IN* computes the mean/standard deviation and normalize across each 
channel in each training example

– Generates a network agnostic to the contrast of the original images. 
A.k.a. erases style information.
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General Proposal
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Style Image Retrieval
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Style Image Retrieval
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1) Search refinement
– Choose the best scored material image per class (pre-trained CNN), and the 

images with more extensive material regions (segmentation)

2) Style removal
– IN whitening from the pre-trained CNN, and L2 norm from query and styles
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Datasets of object materials
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• FMD* dataset:  
– Pixel labels
– 10 class materials
– 1,000 images in total

• Extended-FMD** dataset:  
– Image labels
– Same classes as FMD
– 10,000 images in total

** Zhang, Yan, et al. "Integrating deep features for material recognition." ICPR, 2016. 

* Sharan, Lavanya, et al. "Material perception: What can you see in a brief glance?." Journal of Vision, 2009. 
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Evaluation of IN-based style retrieval
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– Classification and segmentation metrics to evaluate generated results: 
average accuracy (acc) and mean Intersection over the Union (mIoU).

– Baseline: fixed style images, all processes based on Gatys NST
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Cross-classification of material translation
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Fa Fo Gl Le Me Pa Pl St Wa Wo
Fabric - 64 88 27 68 62 80 72 23 62

Foliage 23 - 70 11 27 24 38 40 12 50
Glass 47 38 - 20 55 41 71 41 22 63

Leather 86 32 81 - 35 21 63 54 6 85
Metal 69 27 94 37 - 28 56 62 10 80
Paper 47 24 32 16 27 - 65 49 11 52

Plastic 68 33 86 45 73 26 - 72 30 48
Stone 71 66 87 7 49 72 74 - 23 94
Water 36 27 68 4 46 37 41 58 - 74
Wood 48 52 90 39 33 33 97 84 9 -
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Qualitative results
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– Wood object to different materials, using NST and IN-based style retrieval
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Comparison with different NST methods
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– We evaluated all methods using GAN metrics, i.e., Inception Score (IS), 
and the Frechet Inception Distance (FID).
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Qualitative comparison 
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NST-Base, NST-IN, WCT-Base, WCT-IN, MUNIT-Base, MUNIT-IN, and StarGAN
Content Image
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Conclusion
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• Conclusions:  
– We experimentally proved that by defining an image style search with IN, 

the results of NST material translation are significantly better.

– Our style retrieval proposal can boost material translation results of 
conventional NST methods, such as Gatys, WCT, and MUNIT.

• Future work:  
– Test and analyze different options for removing the style information.

– Integrate the NST, Segmentation, and Search process for results 
optimization.
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Thank You
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