

Style Image Retrieval for Improving Material Translation Using Neural Style Transfer

Gibran Benitez-Garcia^{1,2}, Wataru Shimoda, and Keiji Yanai²

OMRON SINIC X Corporation¹, The University of Electro-Communications²

MMArt-ACM '20 2020.10.26

- Results of Neural Style Transfer methods to translate object materials rely on the style picture chosen to modify the content image
- Automatically find the ideal style image that better translates the material of an object

Content Image

Translated images with different materials

Objective

• Objective:

- Automatically find the ideal style image based on its discrimination level and its relation with the content image in terms of semantic information

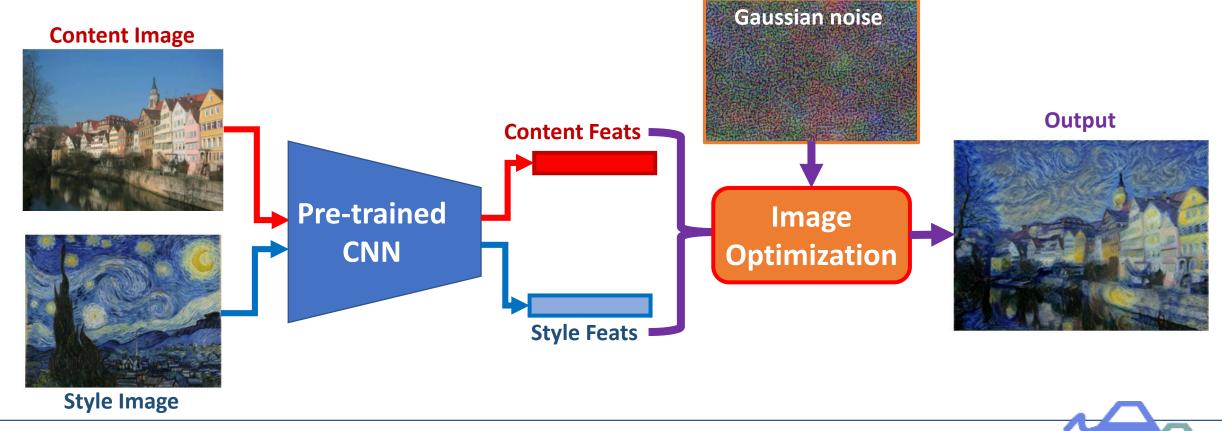
• Approach:

 An image retrieval method based on the most discriminative candidate style images, and evaluate the semantic similarity with the content using IN



Neural Style Transfer

– NST^{*} exploits CNN feature activations to recombine the content of a given photo and the style of artworks

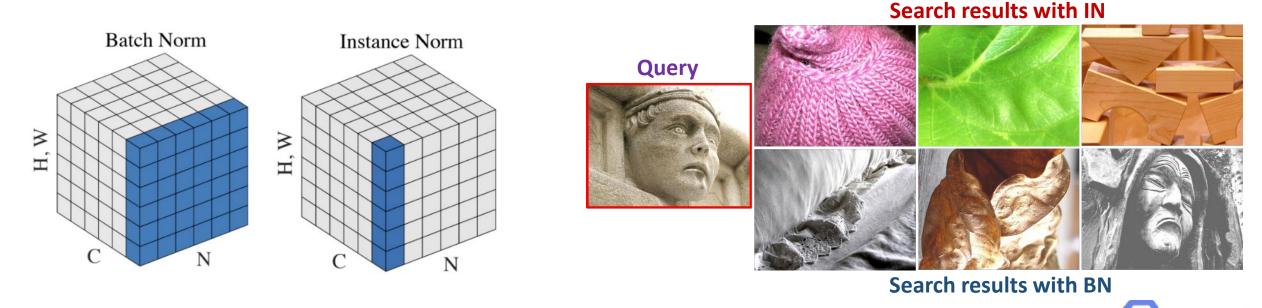


4 * Gatys, Leon, et al. "Image style transfer using convolutional neural networks." CVPR 2016.

Instance Normalization

UEC

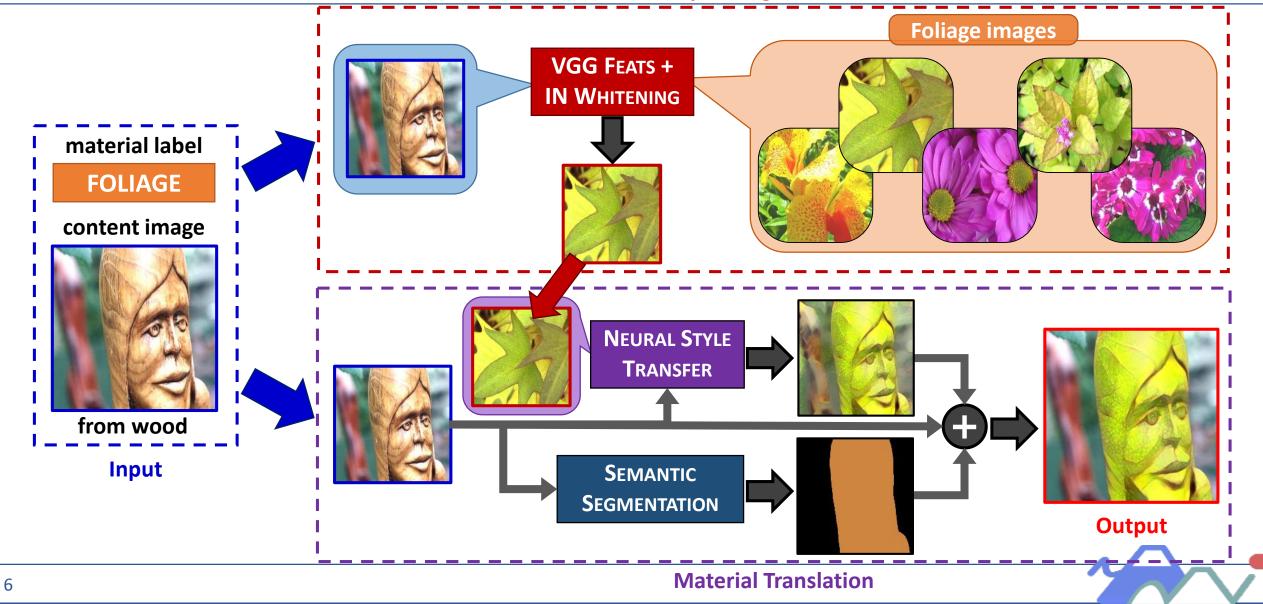
- IN^{*} computes the mean/standard deviation and normalize across each channel in each training example
- Generates a network agnostic to the contrast of the original images. A.k.a. erases style information.



5 * Ulyanov, Dmitry, et al. "Instance normalization: The missing ingredient for fast stylization." arXiv 2016.

General Proposal

Style Image Retrieval

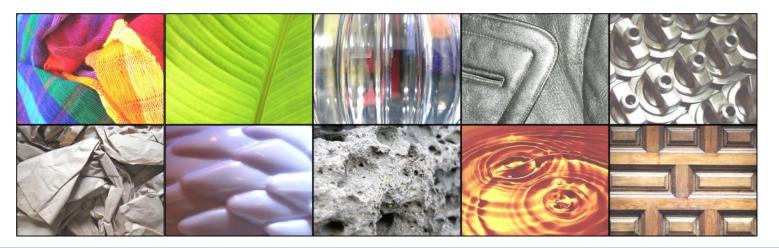


1) Search refinement

 Choose the best scored material image per class (pre-trained CNN), and the images with more extensive material regions (segmentation)

2) Style removal

- IN whitening from the pre-trained CNN, and L2 norm from query and styles



Datasets of object materials

• FMD^{*} dataset:

- Pixel labels
- 10 class materials
- 1,000 images in total
- Extended-FMD^{**} dataset:
 - Image labels
 - Same classes as FMD
 - 10,000 images in total

* Sharan, Lavanya, et al. "Material perception: What can you see in a brief glance?." Journal of Vision, 2009.

8 ** Zhang, Yan, et al. "Integrating deep features for material recognition." ICPR, 2016.

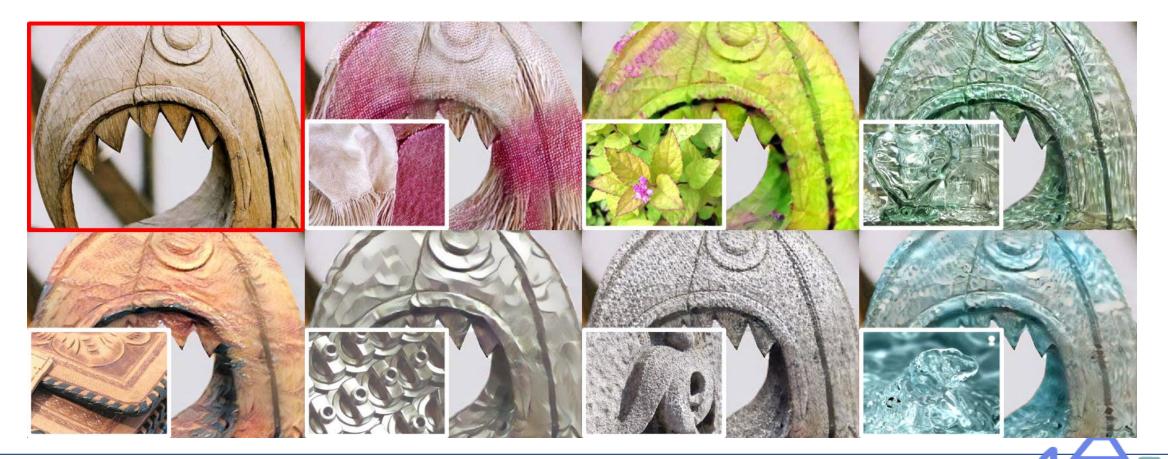
- Classification and segmentation metrics to evaluate generated results: average accuracy (acc) and mean Intersection over the Union (mIoU).
- Baseline: fixed style images, all processes based on Gatys NST

	w/o	refine	w/ r	w/ refine		
Method	acc	mIoU	acc	mIoU		
Baseline	-	-	0.556	0.4860		
VGG19-IN	0.409	0.3967	0.572	0.5062		
VGG19-BN	0.291	0.3612	0.543	0.4887		
VGG19	0.270	0.3520	0.506	0.4845		

Cross-classification of material translation

		translated materials (material B)									
		Fa	Fo	Gl	Le	Me	Pa	Pl	St	Wa	Wo
ul A	Fabric	-	64	88	27	68	62	80	72	23	62
eria	Foliage	23	-	70	11	27	24	38	40	12	50
(material A)	Glass	47	38	-	20	55	41	71	41	22	63
_	Leather	86	32	81	-	35	21	63	54	6	85
ials	Metal	69	27	94	37	-	28	56	62	10	80
materials	Paper	47	24	32	16	27	-	65	49	11	52
ma	Plastic	68	33	86	45	73	26	-	72	30	48
nal	Stone	71	66	87	7	49	72	74	-	23	94
original	Water	36	27	68	4	46	37	41	58	-	74
0L]	Wood	48	52	90	39	33	33	97	84	9	-

- Wood object to different materials, using NST and IN-based style retrieval



© 2020 UEC Tokyo.

Comparison with different NST methods

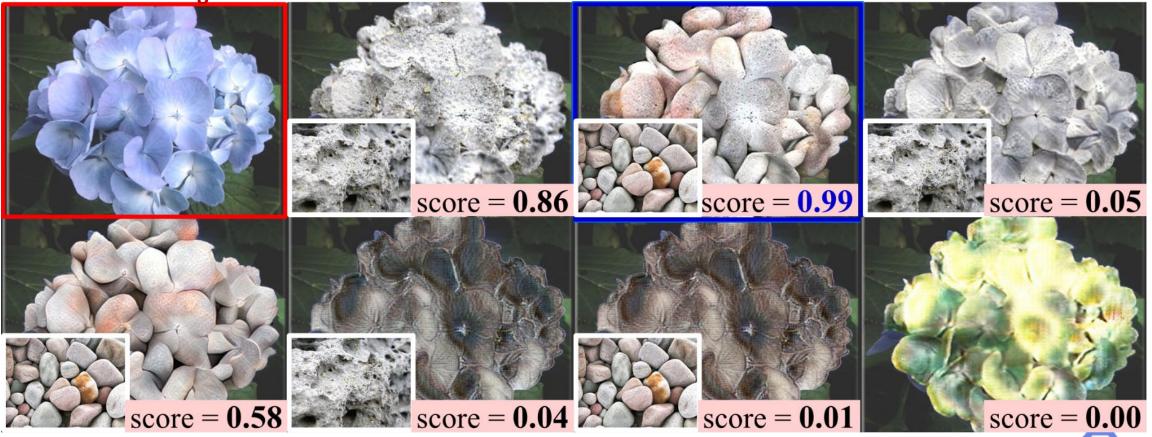
– We evaluated all methods using GAN metrics, i.e., Inception Score (IS), and the Frechet Inception Distance (FID).

Method	Acc ↑	mIoU ↑	IS ↑	$\mathrm{FID}\downarrow$
NST-Base	0.556	0.4860	4.161	66.54
NST-IN (ours)	0.572	0.5062	4.181	61.30
WCT-Base	0.349	0.4133	3.518	65.61
WCT-IN	0.353	0.4079	3.604	64.53
MUNIT-Base	0.343	0.3872	3.475	65.60
MUNIT-IN	0.373	0.3995	3.523	61.52
StarGAN	0.113	0.2738	2.673	103.8

Qualitative comparison

NST-Base, NST-IN, WCT-Base, WCT-IN, MUNIT-Base, MUNIT-IN, and StarGAN

Content Image



Conclusion

• Conclusions:

- We experimentally proved that by defining an image style search with IN, the results of NST material translation are significantly better.
- Our style retrieval proposal can boost material translation results of conventional NST methods, such as Gatys, WCT, and MUNIT.

• Future work:

- Test and analyze different options for removing the style information.
- Integrate the NST, Segmentation, and Search process for results optimization.

Thank You

