

Poster 738

Fast and Accurate Real-Time Semantic Segmentation with Dilated Asymmetric Convolutions

Leonel Rosas-Arias¹, *Gibran Benitez-Garcia*², Jose Portillo-Portillo¹, Gabriel Sanchez-Perez¹ and Keiji Yanai²

¹Instituto Politecnico Nacional, Mexico City, Mexico ²The University of Electro-Communications, Tokyo, Japan

Real-time semantic segmentation

Problem:

- **High-accuracy** semantic segmentation is extremely **expensive to compute**.
- Networks for real-time semantic segmentation sacrifice a lot of accuracy.

Objective:

 Reduce the accuracy gap between real-time and non-real-time for semantic segmentation.

Find and classify pixels belonging to each objects in the scene.

Image from: Janai, Joel & Guney, Fatma & Behl, Aseem & Geiger, Andreas. Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art, 2017.

Contributions

• FASSD-Net:

- SOTA performance of *speed and accuracy* with high resolution images (1024x2048).
- Two additional variations to balance the speed and accuracy trade-offs.
- Dilated Asymmetric Pyramidal Fusion module (DAPF):
 - Obtains feature maps rich in *contextual information*.
 - Requires considerably *fewer floating-point operations* compared with similar method, such as ASPP [1].
- Multi-resolution Dilated Asymmetric module (MDA):
 - Offers an improved way to *fuse two set of feature maps* of different resolution.
 - Simultaneously *refines spatial and contextual information* from input feature maps.
 - Can be used in all decoder stages.

FASSD-Net architecture

FASSD-Net:

- Encoder.- HarDNet [2] (custom version)
- Decoder.- DAPF + MDA

4 [2] P. Chao, et. al. HarDNet: A Low Memory Traffic Network, ICCV 2019.

FASSD-Net architecture

© 2020 UEC Tokyo.

FASSD-Net architecture

Ablation study on the Cityscapes dataset

Method	GFLOPs	No. Parameters	Δp	FPS	mIoU	_
FC-HarDNet-70 [7]	35.4	4.10M	-	52.3	76.4	_
Baseline	32.9	1.90M	0M	56.3	75.2	
+ ASPP	36.8	3.85M	1.95M	50.2	75.8	
+ DAPF	33.9	2.36M	0.46M	53.9	77.7	
+ MDA	44.2	2.38M	0.48M	42.2	77.4	
+ ASPP + MDA	48.0	4.33M	2.43M	39.1	76.8	
+ DAPF + MDA	45.1	2.85M	0.95M	41.1	78.2	FASSD-Ne

Experimental setup:

- All networks pretrained with ImageNet.
- Training during 90k iterations.
- Batch size = 16.
- GFLOPs measured for high resolution images at 1024x2048.
- Speed in FPS measured with an Nvidia GTX 1080Ti card.

Quantitative results

 For fair comparison, the speed of methods marked by (*) are approximated *without TensorRT* acceleration [3].

2) PSPNet and FC-HarDNet-L2

speeds are placed on the x-axis edges for the sake of better visualization.

8 [3] NVIDIA, "TensorRT," [Online; accessed December 1, 2020] https://developer.nvidia.com/tensorrt

Qualitative results

9

Conclusion

• Conclusions:

- We proposed two modules (DAPF & MDA) for reducing the accuracy gap between real-time and non-real-time semantic segmentation networks.
- With FASSD-Net, we set a new **SOTA accuracy for real-time** semantic segmentation on the Cityscapes validation set.

• Future work:

- Include more **backbone networks** and different datasets for evaluation.
- Evaluate on different scenarios, such as **indoor parsing and medical images**.

Thank You

Code & Models

