3D Mesh Reconstruction of Foods from a Single Image

Shu Naritomi, Keiji Yanai The University of Electro-Communications, Tokyo, Japan

Our recent work

- Hungry Networks: 3D Mesh Reconstruction of a Dish and a Plate from a Single Dish Image for Estimating Food Volume. [1]
 - ACM Multimedia Asia 2020.

- **Pop'n Food**: 3D Food Model Estimation System from a Single Image. [2]
 - IEEE MIPR 2021

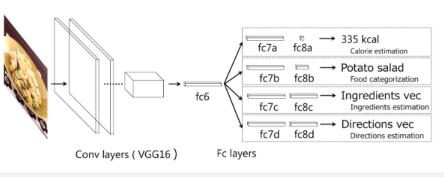
[1] S. Naritomi, and K. Yanai. Hungry Networks: 3D Mesh Reconstruction of a Dish and a Plate from a Single Dish Image for Estimating Food Volume. In Proc. of ACM Multimedia Asia 2020.

[2] S. Naritomi, and K. Yanai. **Pop'n Food**: 3D Food Model Estimation System from a Single Image. In Proc. of IEEE 4th International Conference on Multimedia Information Processing and Retrieval 2021

Introduction

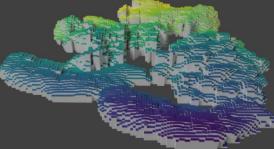
- Dietary calorie management has been an important topic.
- There is a lot of research on calorie estimation in the multimedia community.

2D based



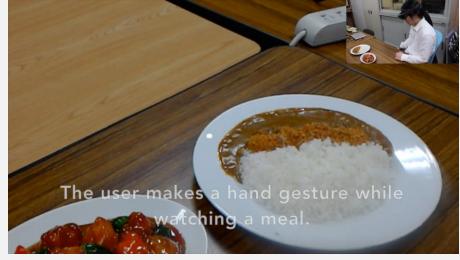
[Ege et al., IEICE2018]

Depth based



[Im2Calories, ICCV 2015]

Sensor based

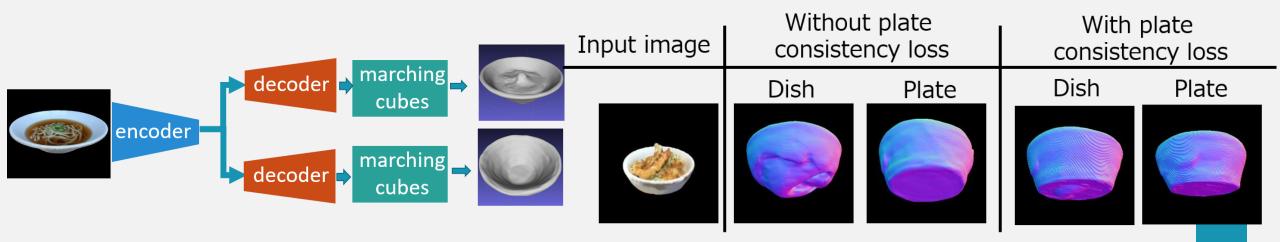


[CalorieCaptorGlass, IEEE VR 2020]

Introduction

Reconstruct 3D dish (food + plate) volume and 3D plate volume
 from a single dish image

- Achieve consistency between the plate part of the two reconstructed volumes introducing plate consistency loss.

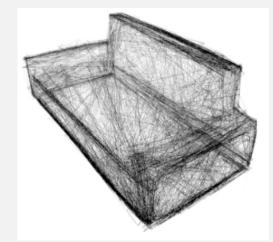


Appropriate 3D representation

- we want to estimate the food volume.
 - Voxel : X Not suitable for high resolution
 - Point cloud: X The connection between points is unknown.
 - Mesh: O It is easy to achieve high resolution.

the volume can be calculated easily if the conditions are met.

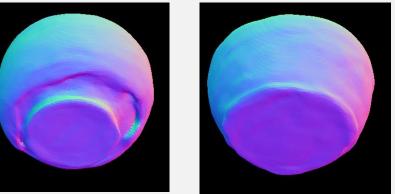
- Conditions for obtaining volume from Mesh
 - Watertight
 - no self-intersection

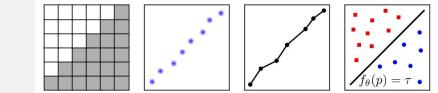


Appropriate 3D representation

- Mesh Template : self-intersection occurs frequency.
- Occupancy, SDF: When a marching cube is used to [Occ extract the mesh, it is watertight and does not self-intersect.

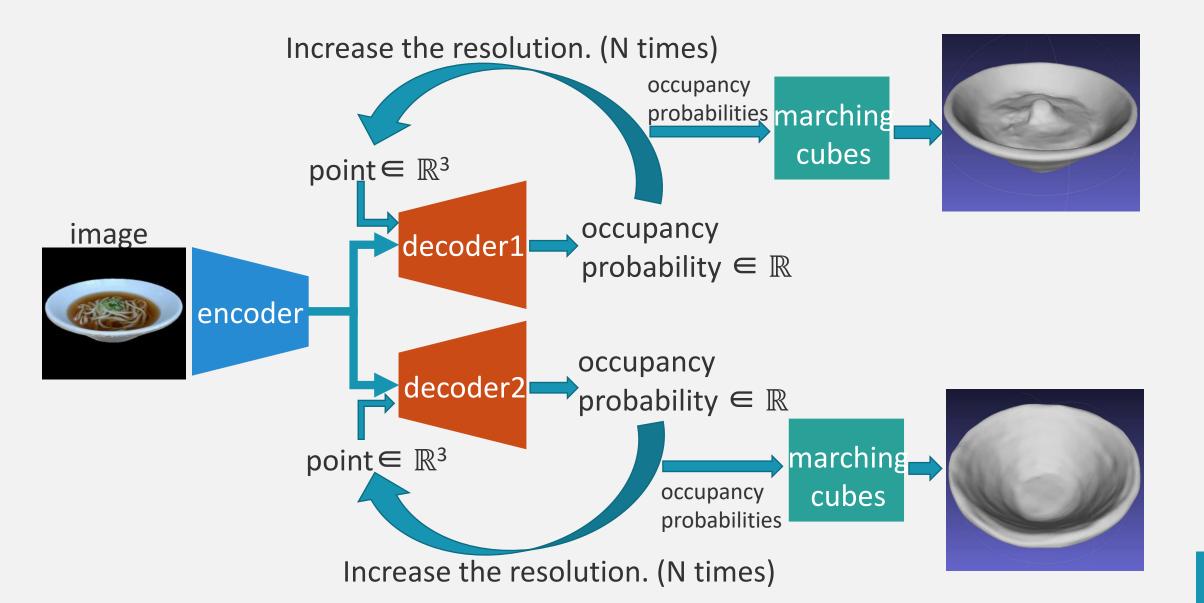
- The problem of situations where the shapes of the plate do not match.
 - The point $p \in R^3$ contained inside the plate is not contained inside the dish mesh.

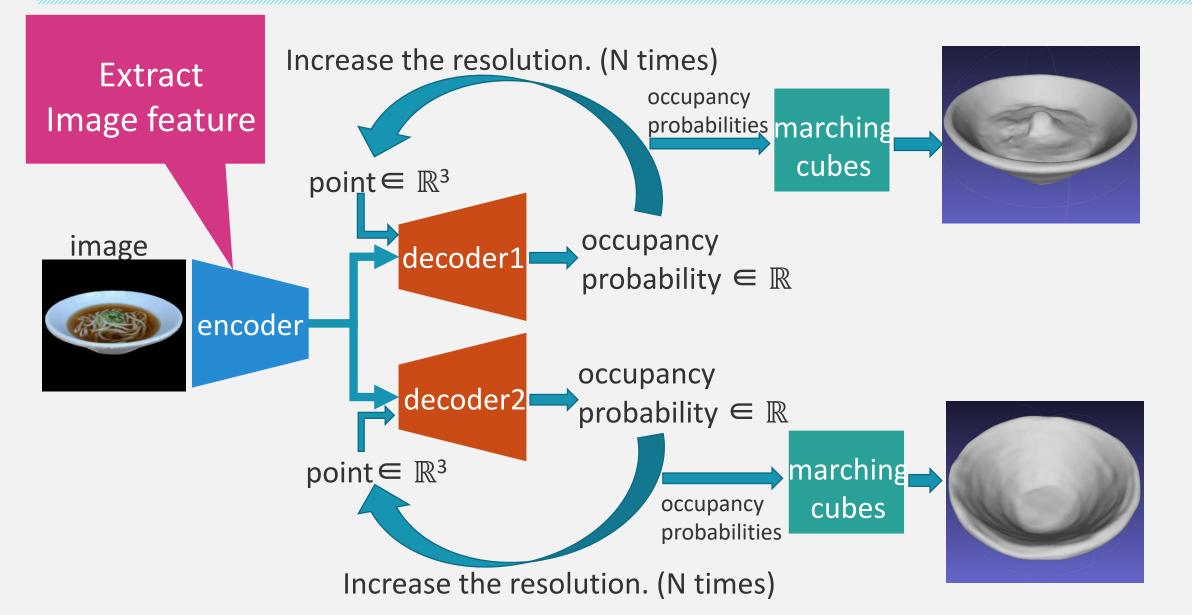


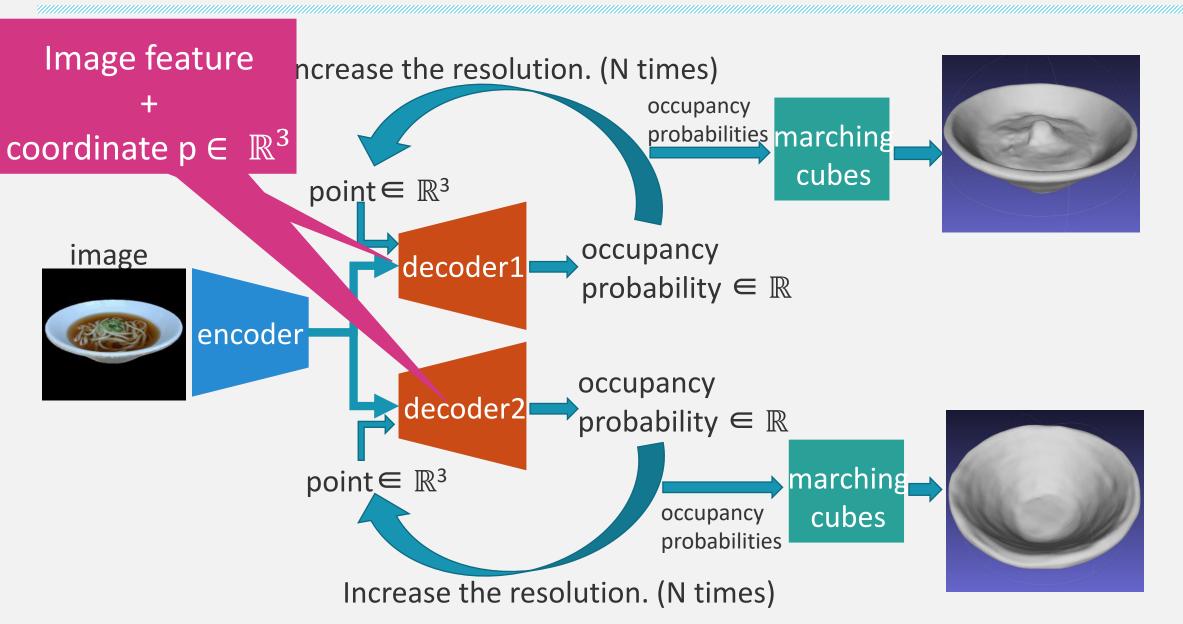


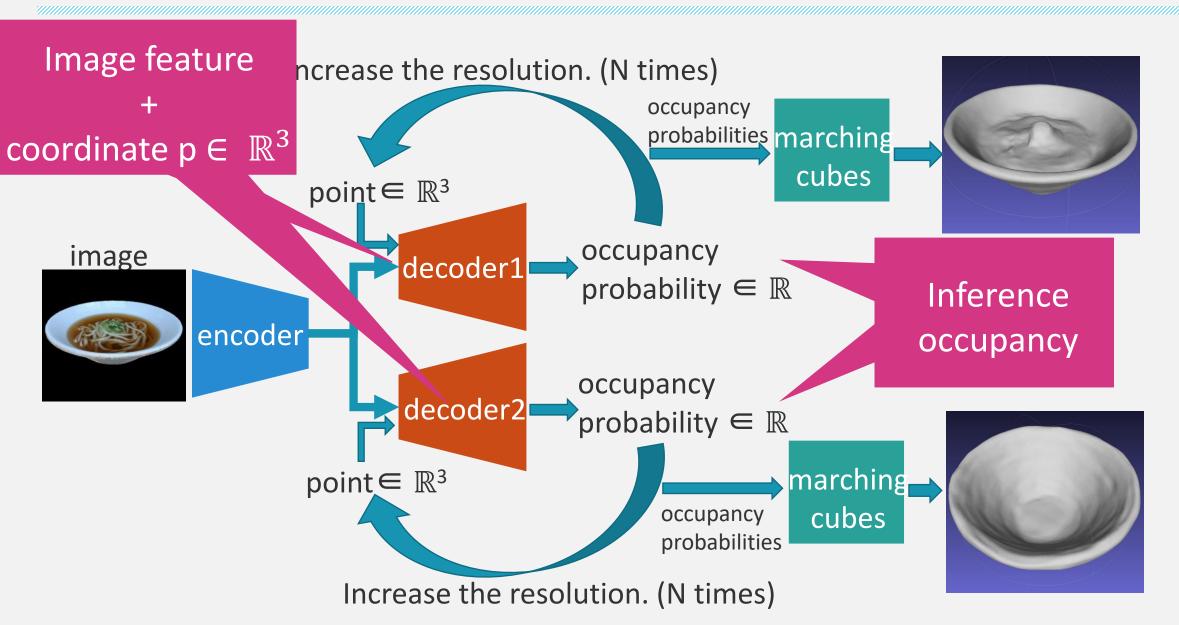
[Occupancy Networks, CVPR2019]

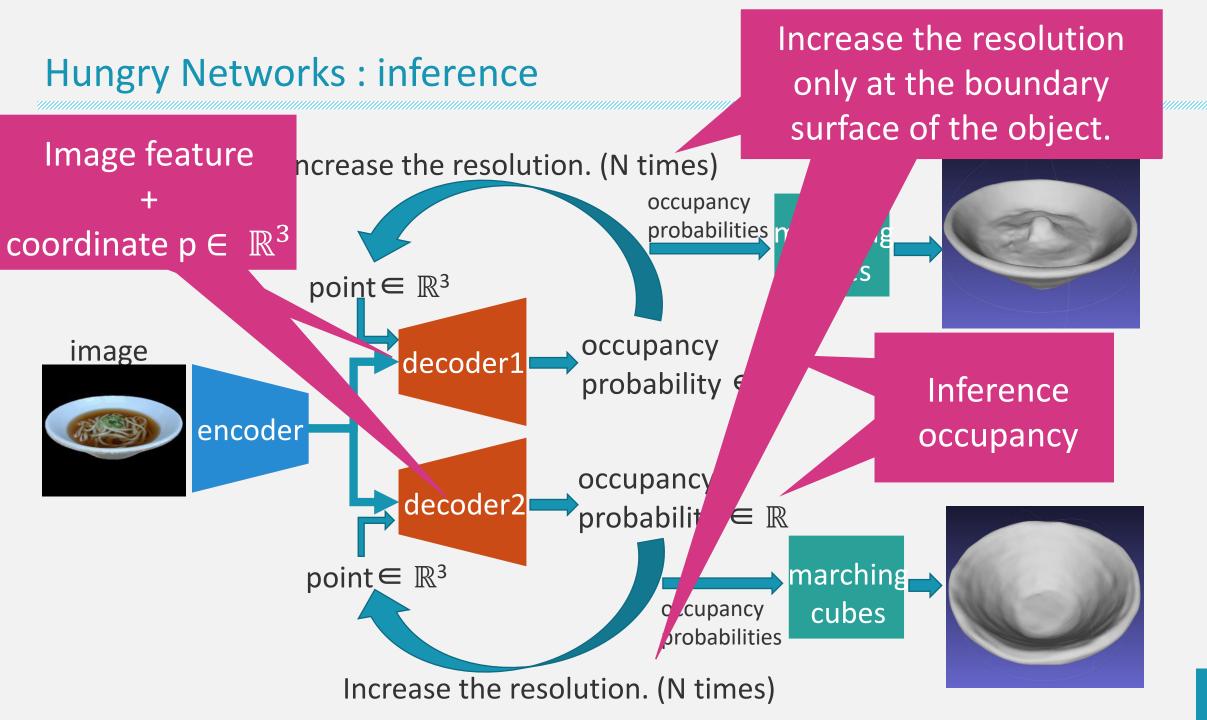
occupancy is reasonable

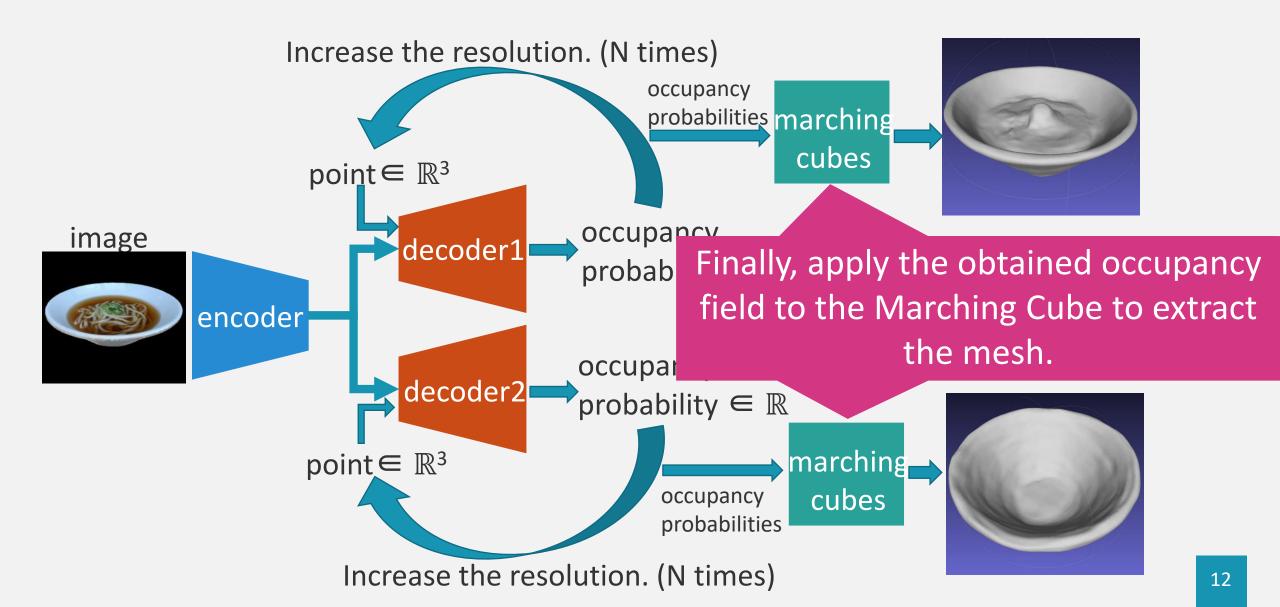










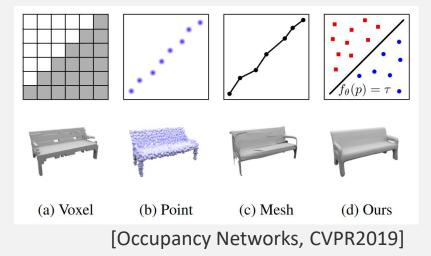


- Learning the occupancy is actually a binary classification.
 - Binary cross entropy loss

 $\mathcal{L}_{\mathcal{O}}(f_d(x,p),o(p)) = \mathcal{L}_{bce}(f_d(x,p),o(p))$

- $p \in \mathbb{R}^3$: input point coordinate
- *x* : image feature vector
- $o(p) \in R$: occupancy of point p

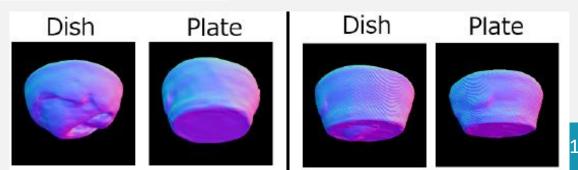
 $f_d(x,p) \in R$: decoder that outputs occupancy



- Plate consistency loss (proposal method)
 - Loss function for matching plate parts of the 3D shape of dish and plat

Dish occupancy $f_{d1}(x, p)$	Plate occupancy $f_{d2}(x, p)$	$f_{d2}(x,p) \\ -f_{d1}(x,p)$
0	0	0
1	0	-1
0	1	1
1	1	0

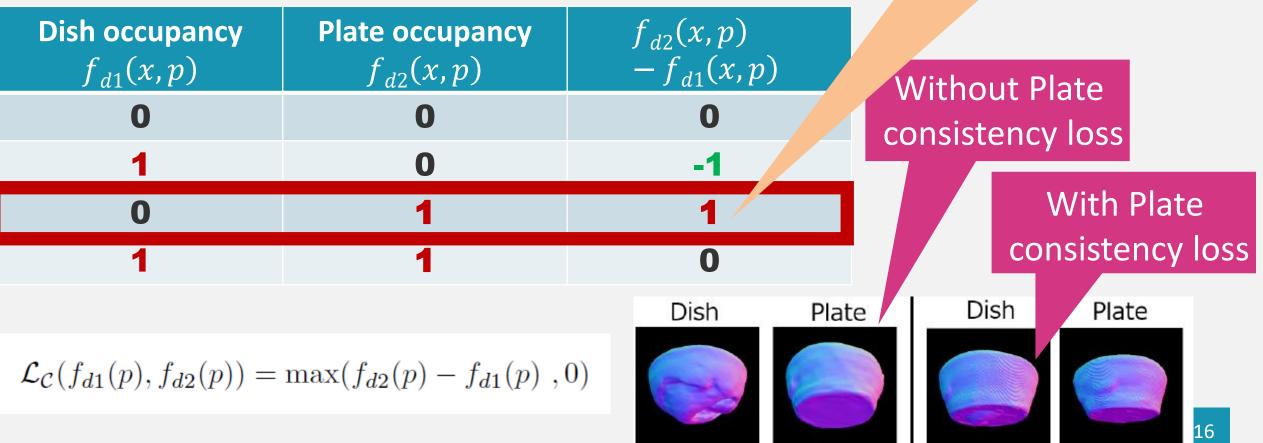
$$\mathcal{L}_{\mathcal{C}}(f_{d1}(p), f_{d2}(p)) = \max(f_{d2}(p) - f_{d1}(p), 0)$$



- Plate consistency loss (proposal method)
 - Loss function for matching plate parts of the 3D shape of dish and plat

Dish occupancy $f_{d1}(x, p)$	Plate occupancy $f_{d2}(x, p)$	$f_{d2}(x,p) \\ -f_{d1}(x,p)$	Without Plate
0	0	0	consistency loss
1	0	-1	
0	1	1	With Plate
1	1	0	consistency loss
		Dish Plat	e Dish Plate
$\mathcal{L}_{\mathcal{C}}(f_{d1}(p), f_{d2}(p)) =$	$\max(f_{d2}(p) - f_{d1}(p)),$	0)	

- Plate consistency loss (proposal method)
 - Loss function for matching plate parts of the 3D shape of dish



There is a problem

if the difference is **1**.

at

- Mini batch loss

$$x_i = f_e(I_i)$$

$$y1_{i,j} = f_{d1}(x_i, p_{i,j})$$

$$y2_{i,j} = f_{d2}(x_i, p_{i,j})$$

 $f_e(I_i)$ Encoder that outputs image feature

- *I_i* i-th image
- \mathcal{B} mini batch

$$\mathcal{L}_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \left(\lambda_1 \mathcal{L}_{\mathcal{O}}(y \mathbf{1}_{i,j}, o \mathbf{1}_i(p_{i,j})) + \lambda_2 \mathcal{L}_{\mathcal{O}}(y \mathbf{2}_{i,j}, o \mathbf{2}_i(p_{i,j})) + \lambda_3 \mathcal{L}_{\mathcal{C}}(y \mathbf{1}_{i,j}, y \mathbf{2}_{i,j}) \right)$$

Training dataset

- There is no dataset containing a 3D mesh of dish.
 - Build a new dataset
- 240 Dish 3D models、 38 plate 3D models.
 - Using a commercially available 3D scanner.



Training dataset

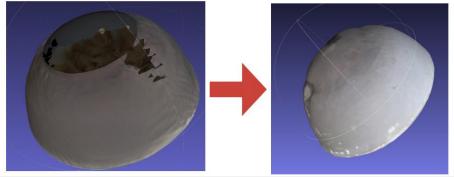
- The mesh output by the scanner cannot be learned as it is.
- problem
 - (1) The center of the model does not coincide with the origin.
 - (2) Not watertight.
 - (3) The size is not unified.
 - (4) Containing noise.
 - (5) The coordinates of the plate parts of a dish mesh and a corresponding plate mesh do not match to each other.

Training dataset

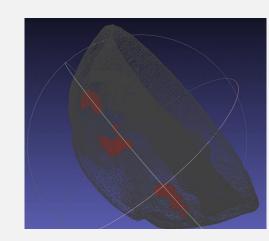
- The mesh output by the scanner cannot be learned as it is.
- problem
 - (1) The center of the model does not coincide with the origin.
 - (2) Not watertight.
 - (3) The size is not unified.
 - (4) Containing noise.
 - (5) The coordinates of the plate parts of a dish mesh and a corresponding plate mesh do not match to each other.

Training dataset : modify scanned mesh data.

- (2) Not watertight.
 - The 3D model taken by the scanner lacks the surface that was in contact with the floor.
 - Apply Poisson Surface Reconstruction

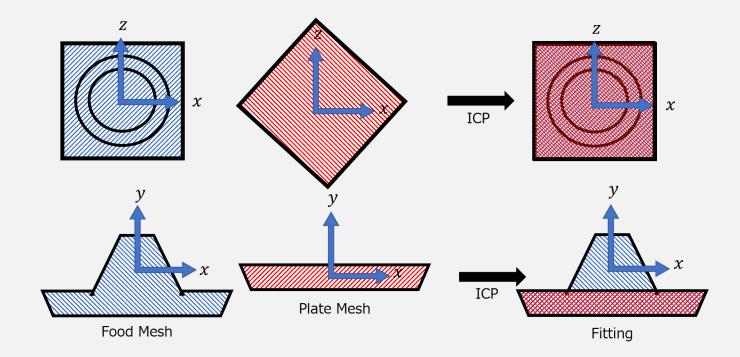


- (4) Contains noise
 - Eliminate using TSDF Fusion



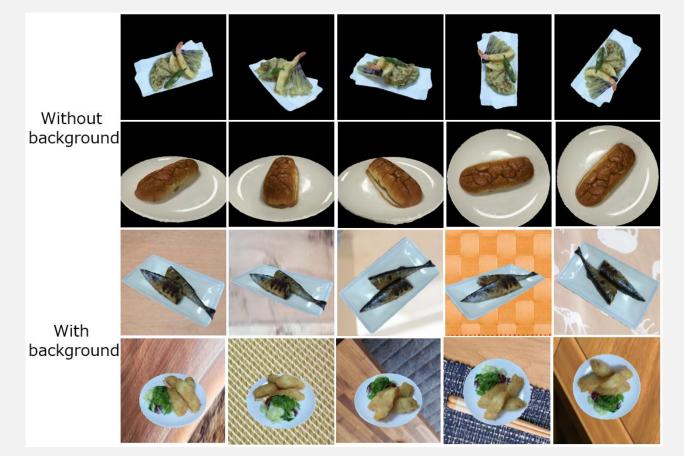
Training dataset : modify scanned mesh data.

- (5) The coordinates of the plate parts of a dish mesh and a corresponding plate mesh do not match to each other.
 - Align dish and plate meshes using ICP (Iterative closest point)



Training dataset : image

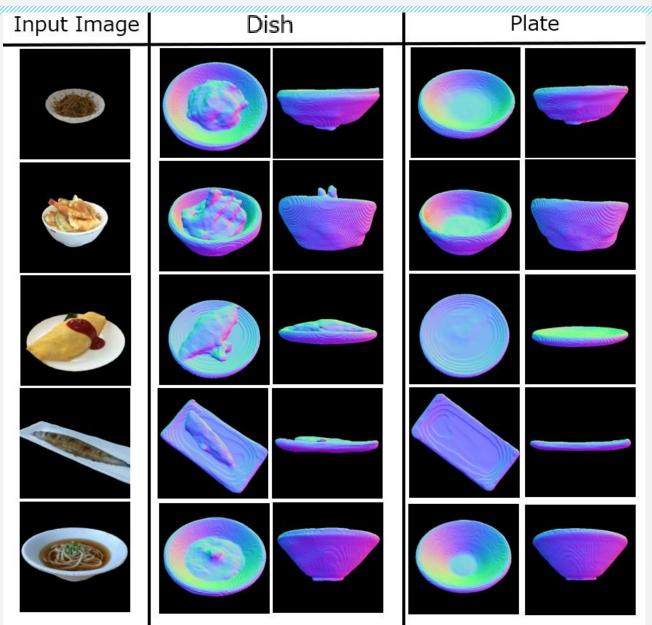
- Rendered using blender as well as 3D-R2N2 [13].
- Two patterns of images are available, with background or without



Experiment : Qualitative evaluation

- ResNet18

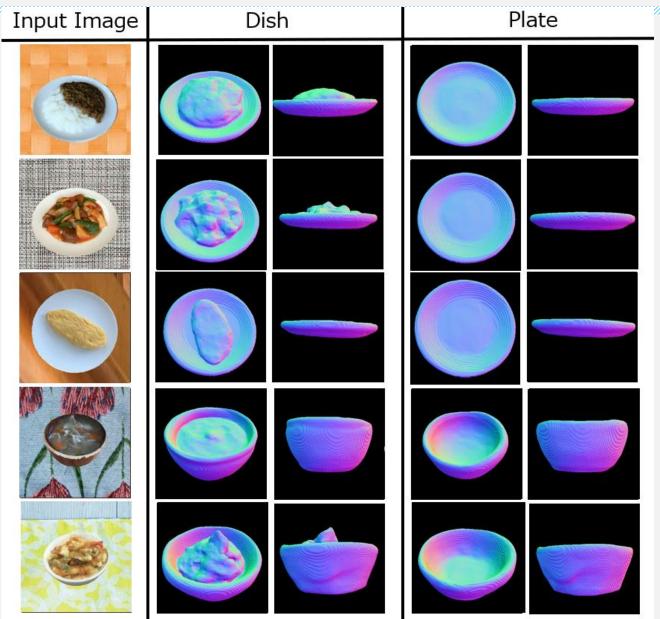
- $\lambda_3 = 20$
- Without background



Experiment : Qualitative evaluation

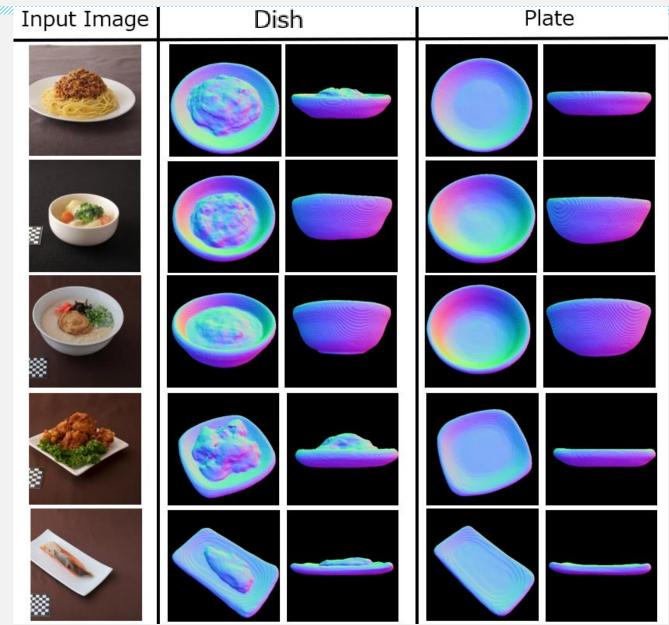
- ResNet18

- $\lambda_3 = 20$
- With background



Experiment : Qualitative evaluation

- ResNet18
- $\lambda_3 = 20$
- With background



Experiment : Quantitative evaluation

- weighting plate consistency loss

λa	IoU (dish)	IoU (plate)	Chamfer	$\operatorname{Chamfer}$	\mathbf{plate}	Volume error	
λ_3			L1 (dish)	L1 (plate)	$\operatorname{consistency}$	volume error	
0	0.624	0.621	0.0189	0.0186	0.0256	0.0252	
20	0.550	0.607	0.0262	0.0182	0.0168	0.0155	
50	0.542	0.610	0.0260	0.0209	0.0152	0.0161	

$$\mathcal{L}_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \left(\lambda_1 \mathcal{L}_{\mathcal{O}}(y \mathbf{1}_{i,j}, o \mathbf{1}_i(p_{i,j})) + \lambda_2 \mathcal{L}_{\mathcal{O}}(y \mathbf{2}_{i,j}, o \mathbf{2}_i(p_{i,j})) + \frac{\lambda_3}{\mathcal{L}_{\mathcal{C}}(y \mathbf{1}_{i,j}, y \mathbf{2}_{i,j})} \right)$$

Experiment : Quantitative evaluation

weighting plate consistency loss

—

plate consistency loss contributes to reducing volume error.

λ_3	IoU (dish)	IoU (plate)	Chamfer Chamfer		plate	Volume error	
			L1 (dish)	L1 (plate) consistency			
0	0.624	0.621	0.0189	0.0186	0.0256	0.0252	
20	0.550	0.607	0.0262	0.0182	0.0168	0.0155	
50	0.542	0.610	0.0260	0.0209	0.0152	0.0161	

$$\mathcal{L}_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \left(\lambda_1 \mathcal{L}_{\mathcal{O}}(y \mathbf{1}_{i,j}, o \mathbf{1}_i(p_{i,j})) + \lambda_2 \mathcal{L}_{\mathcal{O}}(y \mathbf{2}_{i,j}, o \mathbf{2}_i(p_{i,j})) + \frac{\lambda_3}{\mathcal{L}_{\mathcal{C}}}(y \mathbf{1}_{i,j}, y \mathbf{2}_{i,j}) \right)$$

Experiment : Quantitative evaluation

- 2 patterns of learning image with / without background
 - Image with background + ResNet18 + λ_3 =20 Is the most accurate.

encoder	background	IoU (dish)	IoU (plate)	Chamfer L1 (dish)	Chamfer L1 (plate)	Plate consistency score	Volume error
ResNet 18	none	0.560	0.634	0.0265	0.0193	0.0146	0.0150
ResNet 50	none	0.564	0.617	0.0251	0.0186	0.0148	0.0147
ResNet 18	yes	0.565	0.645	0.0254	0.0173	0.0146	0.0146
ResNet 50	yes	0.558	0.628	0.0252	0.0173	0.0157	0.0157

Application

https://youtu.be/Yylu8bL65EE

- Hungry Networks

- Reconstruct 3D dish (food + plate) volume and 3D plate volume from a single dish image

- Introducing plate consistency loss
 - Matching plate parts of the 3D shape of dish and plate
 - Contributes to the accuracy of volume estimation

- Creating a 3D meal dataset for training
 - We showed that it can correspond to the real dish image.

Method objective

Method objective

Method objective

Appropriate 3D representation

- Hungry Networks

- Reconstruct two meshes of dish and plate from a single dish image
- Extend Occupancy Networks [17], an occupancy-based method

- Introducing plate consistency loss
 - Loss function for matching plate parts of the 3D shape of dish and plate