IW-FCV 2022

Generating Images from Small Datasets Using Adaptive Point-wise Grouped Convolutions

Mana Takeda¹, and Keiji Yanai¹ ¹The University of Electro-Communications, Tokyo

- Deep learning models typically use a large amount of data for training.
- However, the construction of large datasets requires a lot of effort.
- For learning with small datasets, the transfer of prior knowledge using pretrained models is effective.
- For deep generative models, a method of transferring prior knowledge to another dataset has also been proposed.
- Noguchi and Harada [12] proposed a new method to generate images from a small data set by transferring a pre-trained generative model.

Objective

Transfer pre-trained generative models to achieve image generation from small datasets.

 x_i

- In general, GANs require a large number of training samples to produce highquality images.
- Few-shot GANs require a large image dataset such as ImageNet for pre-training but use a smaller dataset for fine-tuning.

• Noguchi and Harada

[12] Noguchi, A., Harada, T.: Image generation from small datasets via batch statistics adaptation. ICCV. 2019

- It is a method for adapting a pre-trained generative model to datasets from different domains.
- To effectively use the pre-learned knowledge, the weights of the convolutional layers of the generator are all fixed during fine-tuning.
- Adapt only the scale and shift parameters of the batch normalization (BN) layer to a small dataset.

Method — Adaptive Point-wise Grouped Convolution —

• Extending the work of Noguchi and Harada (a), we introduce an Adaptive pointwise grouping convolution for more flexible domain adaptation.

(a) Channel-wise modulation (Noguchi and Harada[10]) b) Adaptive Point-wise Grouped Convolution (Ours)

(c) Adaptive Point-wise Convolution

Method — Adaptive Point-wise Grouped Convolution —

- The 1×1 convolutional layer, called point-wise convolution (c), constructs new features by computing linear combinations of input channels.
- However, point-wise convolution has the problem of too many parameters.

(a) Channel-wise modulation (Noguchi and Harada[10]) o) Adaptive Point-wise Grouped Convolution (Ours)

(c) Adaptive Point-wise Convolution

Method — Adaptive Point-wise Grouped Convolution —

- The idea of grouping convolution is also applied to Adaptive point-wise convolution (b) as a way to reduce the number of parameters.
- In grouped convolution, the input feature maps are grouped in the channel direction, and convolution operations are applied between each group.
 → The number of parameters can be reduced.

a) Channel-wise modulation (NoguchiとHarada[10]) (b) Adaptive Point-wise Grouped Convolution (Ours) (c) Adaptive Point-wise Convolution

- The generator is first pre-trained on a large dataset such as ImageNet.
- Then, an Adaptive Point-wise Grouped Convolutional layer with corresponding FC layers is inserted immediately after all the batch normalization layers and fine-tuned on a small dataset.
- During inference, a randomly sampled vector *z* based on the standard normal distribution is fed into the generator to generate a random image.

Pre-trained Generator

Experiments — Experiment setup—

- Model
 - BigGAN-128
- Dataset
 - Human face (FFHQ Dataset)
 - Passion flower (Oxford 102 flower Dataset)
 - African firefinch (260 Bird Species Dataset)
 - BMW (Cars Dataset)
- Evaluation metric
 - KMMD

Evaluation metric when the number of test images is small

Experiment 1- Comparison with the baseline -

- We compared the quality of the generated images when the number of groupings was changed based on Noguchi and Harada.
- The quality of the proposed method improved as the number of parameters increased.

 \rightarrow Adaptive point-wise convolution increased the variation of feature channels.

Model	Parameter ratio	Number of data	KMMD(↓)		25	50	100
Noguchi and Harada	1	25 50 100	2.966 2.507 2.509	[12]	8	9	6
Ours	2	25 50 100	2.944 2.496 2.493	Ours (2)		9	.0
	4	25 50 100	2.942 2.491 2.490	Ours (4)	P		8
	8	25 50 100	2.928 2.485 2.487	Ours (8)	Ð		

Experiment2 — Experiments with additional datasets —

- We used 25, 50, and 100 images sampled from each of the four datasets and compared the proposed method with the baseline.
- The proposed method can produce more detailed and higher-quality images than the baseline.

Dataset	Model	Number of data	KMMD(↓)		H 25	uman fa 50	ce 100	Afr 25	ican firefi 50	inch 100
Passion flower	Noguchi and Harada	25 50 100	2.976 2.977 2.965	[12]		0	8		2	
	Ours	25 50 100	2.955 2.960 2.954	Ours						0
African firefinch	Noguchi and Harada	25 50 100	2.965 2.531 2.532	[12]			wer		BIVIV	
	Ours	25 50 100	2.937 2.493 2.506	Ours		-	O		3	5

Experiment2 — Experiments with additional datasets —

- The results of interpolation between two randomly generated latent vectors are shown.
- The proposed method shows clear, smooth, and stable completion.

- In this work, we proposed a simple and effective method for generating images from small datasets.
- By updating only the parameters of Adaptive Point-wise Grouped Conv, a new image can be generated from a small number of images.
- In the future, the method may be used to generate higher-quality images from smaller datasets.

