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Abstract. The recent development of Generative Adversarial Networks
(GANs) has made it possible to generate images with high quality. How-
ever, the problem is that it usually requires a large amount of training
data and a long training time. On the other hand, few-shot GANs have
been studied to fine-tune an image generation model trained on large-
scale data with a small number of training data in a short time. In this
work, we propose a new model for few-shot GANs using adaptive point-
wise grouped convolution layers. The experiments have shown that our
method can generate images with higher quality than the conventional
methods.
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1 Introduction

Deep learning models typically use a large amount of data for training. However,
the construction of large datasets requires a lot of effort. For training of models
with small datasets, using pre-trained models is effective. In image classification
models, transfer learning has been widely studied, where a model is trained using
a large labeled dataset such as ImageNet, and then transferred to other domains
using a small dataset. The method of learning of the target data set from the
weights of the pre-trained model is called fine-tuning. Even fine-tuning of a model
with other domain datasets than the pre-trained dataset tends to improve the
accuracy. This is because the pre-trained model has acquired generally useful
weights that cannot be obtained with a small target data set.

Regarding deep generative models, methods to transfer prior knowledge has
been proposed. Noguchi and Harada [12] proposed a new method to generate
images from a small data set by transferring a pre-trained generative model.
To adapt the prior knowledge, they focused on the scale and shift parameters
of the generative batch statistics. By updating the scale and shift parameters
that adjusts the weights of the filters of the convolutional layers, the pre-trained
model can be adapted to the target domain of a small data set.

Similar to Noguchi and Harada, we propose a method to generate images
from a small dataset by transferring a pre-trained generative model. Unlike them,
we add adaptive point-wise grouped convolutional layers to the generator, and
adapt the pre-trained model to the target domain by learning a cross-channel
combination of features in the hidden layer of the generator. The experiments on
small datasets have show that the proposed method can produce higher quality
images than the conventional methods, and it can flexibly interpolate between
images.
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2 Related works

2.1 Generative Adversarial Network

In the field of image generation, GAN (Generative Adversarial Network) [2] has
achieved great success. The structure of a GAN consists of two parts: a generator
and a discriminator. The role of the generator is to generate as realistic an image
as possible, and the role of the discriminator is to identify whether a given image
is a realistic image or not. In the training process, these two networks are trained
to compete with each other. The generator network transforms an input noise
vector into a real image to fool the discriminator network as much as possible,
while the discriminator network is trained to be as undeceived as possible.

2.2 Few-shot GANs

In general, GANs require a large number of training samples to produce high-
quality images. Even few-shot GANs require large-scale image datasets such as
ImageNet for pre-training, while smaller datasets are used for fine-tuning. Several
methods have been proposed for GANs with a few-shot. Conditional GANs are
trained on a large set of images, and then a new class of images is trained using
a small number of samples. There are two types of GANs that can be trained
in a few-shot training. (1) The pre-trained and few-shot domains are the same,
and only 3-5 images are used to train a few-shot model to add a new category
for the same domain. (2) The pre-trained and few-shot domains are different,
and about 50 images are used to train a few-shot model for a new domain. In
this study, we focus on the case of (2).

The representative works of (1) include Hong et al. [4, 3] and FS-GAN [14].
Hong et al. [4, 3] proposed a method to fuse information from multiple con-
ditional images of the same class. FS-GAN [14] factorized the weights of the
convolutional and fully connected layers of the pre-trained model with SVD to
identify a meaningful parameter space for adaptation.

The representative works of (2) include Yijun et al. [9], Noguchi and Harada [12].
Yijun et al. [9] extended the idea of Elastic Weight Consolidation [7] to adapt
the source model to the target domain. Extending the idea of Consolidation to
adapt the source model to the target domain by penalizing large changes in
important weights (estimated via Fisher information) in the source model.

Noguchi and Harada [12] proposed a method to adapt a pre-trained genera-
tive model to datasets from different domains. To effectively use the pre-learned
knowledge, the weights of the convolutional layers of the generator are all fixed
during fine-tuning. Instead, only the scale and shift parameters of the batch nor-
malization (BN) layer are adapted to small datasets in different domains from
the training data used in the pre-training. Using the class-conditional batch nor-
malization used in SNGAN projection [10], it was possible to generate a variety
of images from a small number of training samples by dynamically changing the
scale and shift parameters. Fine-tuning of the BN parameters is considered as
channel-wise feature modulation [13].

Like Noguchi and Harada, our work focuses on improving the sample ef-
ficiency of GANs by adapting a few-shot. However, unlike them, we do not
only tune the parameters of each channel but also tune the channels by linear
combination among them. In other words, while they employ “channel-wise”
feature modulation, we employ “cross-channel” feature modulation. To enable
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cross-channel feature modulation, We propose to introduce adaptive point-wise
grouped convolutional layers into the generator during fine-tuning. We then pro-
pose to freeze all convolutional layers and train only those layers. This allows
us to adapt the pre-trained generator more flexibly by replacing the per-channel
modulation with inter-channel modulation.

3 Method

Using a small dataset, we propose a method to adapt a pre-trained generative
model to a different domain than the pre-trained one. Extending the work of
Noguchi and Harada [12], we introduce adaptive point-wise grouping convolution
to achieve more flexible domain adaptation. This means that instead of per-
channel feature modulation, we use inter-channel feature modulation.

3.1 Adaptive point-wise convolution

In this work, we use point-wise convolution, which is a component of depth-wise
separable convolution, as a channel selection method. A depth-wise separable
convolution is an important component of many efficient neural network archi-
tectures [5]. It consists of two kinds of convolutional layers. The first layer is a
depth-wise convolution layer, which performs lightweight filtering by applying
one convolutional filter per input channel. The second layer is a 1×1 convolution
layer, called a point-wise convolution, which builds new features by computing
a linear combination of the input channels.

We briefly analyze the proposed method in terms of channel selection. Ap-
plying a point-wise convolution and computing the linear combination of the
input channels is equivalent to the computation of a fully-connected layer in
the channel direction, which can be represented as the following convolutional
operation:

xAdapt = Wx+ b (1)

Here, x represents a feature vector over all the channels on a certain pixel (or
position) of the input feature map, and xAdapt represents the output vector of
the corresponding pixel. Since the computation of a point-wise convolution is
independent between each pair of the pixels, we can regard a point-wise convo-
lution as a point-wise fully-connected layer. W and b represent a weight matrix
and a bias vector of a point-wise convolution, respectively. When the number
of input channels is cin and the number of output channels is cout, they are
W ∈ Rcout×cin and b ∈ Rcout . In case of “adaptive” point-wise convolution, we
vary W and b adaptively by generating them dynamically with an external fully
connected (FC) layer. Varying W means adjusting the weights of a linear combi-
nation of the channel elements, while changing b means adjusting the threshold
of the ReLU activation just after the adaptive point-wise layer. In the proposed
method, the parameters of the adaptive point-wise convolution, W and b, are
generated in one fully connected layer from the potential vector z. This allows
us to adapt the model more flexibly to images in new domains.
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Fig. 1. (a) Channel-wise modulation (BN). (b) Limited cross-channel modulation. (c)
Full cross-channel modulation.

3.2 Reduction of training parameters

Adaptive point-wise convolution allows for more complex representations using a
linear combination of channels compared to the class conditional batch normal-
ization (BN) used in work of Noguchi and Harada [12]. However, the number of
parameters in the weights W is cin×cout, which is much larger than the number
of weights cout in conditional BN. This may lead to overfitting when training on
small datasets. Therefore, as a way to reduce the number of parameters, we ap-
ply the idea of a grouped convolution into an adaptive point-wise convolution. In
a grouped convolution, an input feature map is grouped in the channel direction,
and a convolutional operation is applied among each of the groups. If the number
of channels to be grouped is equal to the number of channels in the convolutional
layer, we can represent depth-wise convolution. If we make a point-wise convo-
lution to a depth-wise point-wise convolution, it means channel-wise weighting
which is equivalent to the γ weight of a batch normalization layer. Figure 1
depicts the differences among conditional BN, point-wise grouped convolution,
and point-wise convolution, which corresponds to channel-wise modulation [13],
limited cross-channel modulation, and fully cross-channel modulation, respec-
tively. In this paper, limited cross-channel modulation is adopted to balance the
number of parameters and the flexibility of feature modulation.

In this work, we propose to use a point-wise grouped convolution instead of
a normal point-wise convolution which requires a cin × cout weight matrix. We
restrict the number of training parameters for point-wise grouped convolution
to 2, 4, and 8 times that of class conditional batch regularization.

3.3 Training

In case of GAN, the discriminator distinguishes between real training images and
fake generated images, and the generator generates realistic images by perform-
ing adversarial training. However, this method assumes that the distribution of
training samples can be densely filled. If the number of training samples is small,
overfitting for small datasets will occur and the learning will become unstable.
Therefore, it is desirable to train in a supervised training framework such as
VAE. To train the generator by supervised learning, we also optimize the latent
vector z corresponding to the training image, following Noguchi and Harada [12].
The proposed network is shown in Figure 2. During training, we optimize the
loss function L, which is modeled as a distance function from the target image.
The loss function L is similar to [12] in that it uses the L1 loss, which is the
pixel-level distance, and the Perceptual loss, which is the semantic-level distance.

We assume that the generative network has been pre-trained on a large
dataset such as ImageNet. In the fine-tuning step using a small dataset, we first



Generating Images from Small Datasets 5

insert an adaptive point-wise grouped convolutional layer with a corresponding
fully connected (FC) layer immediately after the batch normalization layer and
then fine-tune the parameters of the FC layer while keeping all the parameters
of the original generative network frozen. Similar to [12], the latent variables are
also updated during the fine-tuning.

Fig. 2. The proposed model. The yellow blocks in the figure represent the trainable
layers. During training, the latent variable z and the parameters of adaptive point-wise
convolution are updated to minimize L1 loss and perceptual loss.

3.4 Inference

At the time of inference, a random image can be generated by inputting a ran-
domly sampled vector z to the generator based on the standard normal distri-
bution. However, since the generator only learns the relationship between the
potential vector and the sparse training sample, its performance degrades for z
that is far from the training sample. To solve this problem, we sample z from the
truncated normal distribution as in Noguchi and Harada [12]. This technique is
known as the truncation trick [1]. In the same way as [12], 0.4 was used as the
truncation threshold.

4 Experiments

Several experiments were conducted to evaluate the stability of the proposed
method in generating images from small datasets. We also compared our method
with existing studies. For the generator, BigGAN [1] was used, referring to
Noguchi and Harada [12]. We used an image size of 128x128. In all the experi-
ments, we used the BigGAN-128 model pre-trained on ImageNet which consisted
of five ResBlocks.

4.1 Datasets and metrics

The datasets used in the experiments were the FFHQ dataset [6], the passion-
flower image from the Oxford 102 flower dataset [11], the African firefinch image
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from the 260 Bird Species dataset 1, and the African firefinch image in the
Cars dataset [8], and an image of a BMW in the Cars dataset [8]. The domains
used in this experiment, “Human face”, “Passionflower”, “African firefinch”, and
“BMW” are not included in the ImageNet class, and thus can be regarded as the
different domains from ImageNet. As an evaluation metric, to evaluate the qual-
ity of the generated images, KMMD (Kernel Maxi-mum Mean Discrepancy) was
employed. KMMD is characterized by its ability to produce stable results even
when the number of images in the dataset is small. The KMMD was computed
using a Gaussian kernel between images pre-trained in an inception network con-
sisting of training and generated images. The lower the KMMD, the better the
quality. Note that the hyperparameters of KMMD used in the experiment are
different from those used in Noguchi and Harada [12] and thus show different
values.

4.2 Comparison with the baseline

The method (2) of the few-shot GAN explained in Section 2.2 was used as
the baseline. Whereas [12] updates the scale and shift parameters of the batch
statistics for each channel, in our work we adapt the domain by updating the
parameters of the adaptive point-wise grouped convolution. Our method has
the advantage of being able to mix multiple channel activations in a point-wise
convolution, which allows for more flexible adaptation. Although this method has
the advantage of allowing more flexible adaptation, the number of parameters
can be huge. Therefore, we use grouped convolution to limit the number of
training parameters. The number of parameters in [12] is used as a reference.
By varying the number of groupings, we compare the quality of the generated
images by the proposed method when the number of parameters is increased to
2, 4, and 8 times. Here, the baseline method [12] corresponds to the case where
the number of channels to be grouped is set to the same value as the number
of channels in the convolutional layer. We generated images in the “Human
face” domain using 25, 50, and 100 images sampled from the FFHQ dataset [6].
The experimental results are shown in Table 1 ,which shows that the quality
of the proposed method improves as the number of parameters increases. This
indicates that the adaptive point cloud convolutional layer increases the variation
of feature channels by combining activations across multiple channels. We also
ran an experiment without additional grouping. In this case, the number of
parameters was about 765, which was too large to train. Therefore, we set the
batch size to 1 to train the model, taking into account the memory limit of the
GPU. Unfortunately, the training failed due to insufficient memory on the GPU.

4.3 Experiments with additional datasets

In this experiment, we used all four datasets to compare our method with the
baseline [12]. We used a sampling of 25, 50, and 100 images from each of the
four datasets. Our method used an adaptive point-wise grouped convolution
with parameters eight times larger than the baseline [12]. Figure 3 shows some
generated images for the four datasets with three kinds of sample numbers, and
Table 2 shows its qualitative results on them.

1 https://www.kaggle.com/gpiosenka/100-bird-species
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From Figure 3, it is clear that the proposed method can generate more de-
tailed images than the baseline. In Table 2, the proposed method showed higher
quality than the baseline method for all the datasets and all the numbers of train-
ing samples. This is because we reuse the previously learned feature channels and
combine them among the channels to learn the best representation. Compared
to the baseline method which modifies the activation within each channel by
scaling or shifting, the proposed method achieves more flexible representation.

Figure 4 shows the result of interpolation between two randomly generated
latent vectors. Despite the small amount of training data, the interpolation is
clearer, smoother, and more stable than the baseline [12].

Table 1. Relation between the number of
parameters and quality of the generated
images.

Parameter Number
Model ratio of data KMMD

25 2.966
[12] 1 50 2.507

100 2.509
25 2.944

2 50 2.496
100 2.493
25 2.942

Ours 4 50 2.491
100 2.490
25 2.928

8 50 2.485
100 2.487

Table 2. Quantitative comparison.

Dataset Model Number of data KMMD

25 2.966
[12] 50 2.507

Human 100 2.509
face 25 2.928

Ours 50 2.485
100 2.487
25 2.976

[12] 50 2.977
Passion 100 2.965
flower 25 2.955

Ours 50 2.960
100 2.954
25 2.965

[12] 50 2.531
African 100 2.532
firefinch 25 2.937

Ours 50 2.493
100 2.506
25 2.969

[12] 50 2.522
BMW 100 2.518

25 2.934
Ours 50 2.487

100 2.498

Fig. 3. Qualitative evaluation for the four
dataset. Fig. 4. Interpolation between two images.
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5 Conclusions

In this work, we proposed a simple and effective method for generating images
from small datasets. By fine-tuning the FC layers which dynamically generates
the parameters of the adaptive point-wise grouping convolution, the proposed
method is able to generate new images from much fewer images than required
for training a regular generator, using prior knowledge of the pre-trained gener-
ator. The results show that the proposed method is able to synthesize higher-
quality images with fewer training datasets than the existing baseline methods.
This suggests that cross-channel modulation is more flexible and adaptable than
per-channel modulation. In the future, we plan to investigate the possibility of
generating higher-quality images with fewer data sets.
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