CONTINUAL LEARNING IN VISION TRANSFORMER

Mana Takeda

Keiji Yanai

The University of Electro-Communications, Tokyo, Japan

ABSTRACT

Continual learning aims to continuously learn new tasks
from new data while retaining the knowledge of tasks learned
in the past. Recently, the Vision Transformer, which utilizes
the Transformer initially proposed in natural language pro-
cessing for computer vision, has shown higher accuracy than
Convolutional Neural Networks (CNN) in image recognition
tasks. However, there are few methods that have achieved
continual learning with Vision Transformer. In this paper, we
compare and improve continual learning methods that can be
applied to both CNN and Vision Transformers. In our exper-
iments, we compare several continual learning methods and
their combinations to show the differences in accuracy and
the number of parameters.

Index Terms— Continual Learning, Vision Transformer

1. INTRODUCTION

In a deep learning model, when multiple tasks are given se-
quentially, the previously learned tasks are overwritten by the
new tasks and forgotten. This is called catastrophic forget-
ting. Continual learning deals with catastrophic forgetting by
continuously learning new tasks from new data while retain-
ing the knowledge of previously learned tasks.

Recently, Vision Transformer [1, 2], which utilizes the
Transformer architecture initially proposed in natural lan-
guage processing for computer vision, has shown higher
accuracy than CNN in image recognition tasks. However,
conventional continual learning methods are generally con-
sidered to be applied to the convolutional layer of CNN, and
therefore, the methods that can be applied to all the combined
layers of Vision Transformer are limited. Furthermore, there
is no method that has been shown to be effective for both
CNN and Vision Transformer.

Therefore, the purpose of this paper is to investigate meth-
ods that can be applied to both CNN and Vision Transformer,
and can suppress catastrophic forgetting with a small num-
ber of additional parameters. By comparing the accuracy and
the number of extra parameters of each method, we examine
whether the methods are effective not only for CNN but also
for Vision Transformer. Furthermore, we aim to propose a
method with higher performance by combining conventional
methods.

2. RELATED WORKS

Continual learning aims to balance two trade-offs: rigidity to
change and plasticity to adapt so that new data is learned but
past data is not forgotten [3, 4, 5]. Singh et al. [6] proposed
Recognition-based Knowledge Retention (RKR), a method
for modifying the weights and intermediate activations of a

network for each task in continual learning. The weight mod-
ification is done by adding parameters generated by a gener-
ator called Rectification Generator (RG) to the weights of the
convolutional layer. The intermediate activation is modified
by multiplying the output of the convolutional layer by a pa-
rameter generated by a generator called Scaling Factor Gen-
erator (SFG). Piggyback [7] is a method for learning a large
number of tasks with high accuracy by transforming the out-
put by applying a learned weight mask to the weights of the
base model. RKR and Piggyback can be applied to the fully
connected layer, and can be applied to Vision Transformer.

Transformer was first introduced in machine translation
in natural language processing [8] and is now a common
method. ViT [1] proposed to apply the Transformer to com-
puter vision by using a patch of pixels as a token. Swin
Transformer [2] is a method that solves the problem of adapt-
ing the Transformer from language to vision by computing it
hierarchically using a shifted window. Specifically, they dealt
with large changes in the scale of visual entities and the high
resolution of pixels in images compared to words in texts.
In this paper, we use ViT and Swin Transformer to verify
the performance of the continual learning method in Vision
Transformer.

Recently, several continuous learning methods specific
to Vision Transformer have been proposed. DyTox [9] is a
method where the initial layer is shared by all tasks and task-
specific tokens are used to generate task-specific embeddings.
Learning to Prompt for Continual Learning (L2P) [10] is a
method inspired by prompt learning [11], a new continuous
learning method in the field of natural language processing.
These methods do not apply to CNN as they are specialized in
Vision Transformer. Furthermore, these methods are methods
for class incremental learning, which is a different purpose
from the purpose of this paper, which is task incremental
learning.

3. METHOD

In this paper, we present a comparative study of continual
learning methods applicable to CNN and Vision Transformer,
which are RKR [6] and Piggyback [7]. Furthermore, we pro-
pose a new method, Mask-RKR, which is a combination of
these two methods. By applying Piggyback [7] to the base
RKR [6], Mask-RKR retains the characteristics of RKR while
reducing the number of additional parameters due to the in-
crease in the number of tasks.

3.1. Adaptation to the task by RKR

In Mask-RKR, RKR is applied to all the fully connected lay-
ers of the Vision Transformer except the final output layer.
For each layer, the weights are modified by RG and the in-
termediate activations are modified by SFG. The RKR for all

Rectified Layer Weight e‘t

Fig. 1: Overview of adaptation to tasks with RKR in Mask-
RKR(Quote from [6])

the fully connected layers in the Vision Transformer is shown
in the Figure 1. In the case of the [th layer of task ¢, the RG!
generates the weights 6} of all the coupled layers adapted to
each task. 6! is then applied to input I; to produce the output
O,. SFG! generates a scaling factor F}, which is applied to
O, to produce the scaled output O}.

The modification of the weights by RG is shown in Equa-
tion (1).

o -
R =

0, @ R! (1
MATMUL(LM}, RM}))

In RG, a parameter R is learned to modify the weights, and
R! is added to the weights of layer [of task ¢, respectively.
Here, ©; is the weight of layer [, ©} is the modified weight
of layer [in task ¢, and & is the sum of each element. To
reduce the number of parameters in RG, we use a low-rank
approximation of R}. This is shown in Equation (2). In RG,
two matrices of small size, LM} and RM/, are learned, and
the product of these two matrices generates the parameter R}
for weight modification. In the fully connected layer, a filter
R! of size H;;, X Hyy is generated from a matrix LM of size
H;, x Kand a matrix RMlt of size K x H,,;, Where H;,
and H,,; are the input and output sizes of fully connected
layers, respectively. MATMUL is the matrix product. K is
the rank of the low-rank approximation. Here, K << H,,
and K << H,yt.

The modification of the intermediate activation by SFG is
shown in Equation Equation (3).

0! = 0,0FR 3)

In SFG, a parameter F' is learned to modify the intermediate
activations, and F}' is multiplied by the intermediate activa-
tion of layer [in task ¢. Here, O; is the output of layer [,
O} is the modified output of layer [in task ¢, and © is the
per-element product. In SFG, F is learned. In the fully con-
nected layer, the size of the F} is H,,:. Compared to RG,
SFG does not require a low-rank approximation of matrices
because it generates fewer parameters.

3.2. Parameter reduction by Piggyback

Piggyback is a method of transforming the output by apply-
ing a learned weight mask to the weights of the base model.
Mask-RKR does not apply Piggyback directly to the weights,
but the parameters of RKR. Specifically, it is applied to the
two low-rank approximated parameters LM and RM of RKR

Piggyback Piggyback
Binary Real-valued Piggyback
00 aSk mask Binary Real-valued Binary Real-valued
gg o g mask mask mask mask
Thresholding|g 00000 [000 O IQO000)|
80 ;ﬁ;cgor‘\ng o]e) Threshulding
LMP®® mblf mrif RMpse mbrf Functon " mrrf
aes
©
Low rank approximation S~
4 ! ®
S 30000 +
1% X ©00 O olelolele t
in 3 K[~ 00 — Hj %g?é Hout
- Hout 8
K Hou Ft
t t t 1
LM} RM; Ry
(b) SFG

(a) RG
Fig. 2: Parameter Reduction in Mask-RKR

and the parameter F' of SFG. Mask learning is accomplished
by keeping a set of real-valued weights, passing them through
a deterministic threshold function to obtain a binary mask,
and applying it to the existing weights. By updating the real-
valued weights using back propagation, a binary mask suit-
able for the task is learned. By learning different binary masks
for each task and applying them to the RG and SFG parame-
ters element by element, the same base network can be reused
for multiple tasks with a minimum of additional parameters.
The procedure of mask learning in RG of Mask-RKR is
shown in Figure 2a. In the RG, the weight-modifying param-
eter R} is added to the weights of layer [of task ¢, respec-
tively. The R} is approximated by a low-rank approxima-
tion for parameter reduction and decomposed into two ma-
trices LM} and RM{ for training. where R} € RHin*Hout

and RM} € REXHout are used for the full coupling layer.
First, we use ImageNet-1k for training only the base param-
eters LMlb‘”e and RM;’““. Next, in task ¢, we learn only

real-valued masks while keeping L/, lbase and RM, lbase fixed.
Real-valued masks are learned for both LM and RM, with
the real-valued mask mrl} for LM having the same size as
LM} and the real-valued mask mrr} for RM having the same
size as RM}'. Each real-valued mask is passed through the
hard binary thresholding function given in Equation (4), as in
[7], to obtain the thresholded mask matrices mbl} and mbr}.
Where mr is the real-valued mask, mb is the binary mask,
and 7 is the chosen threshold. In the binary mask, the base
parameter is activated or deactivated depending on whether a

particular value mb;; of the thresholded mask matrix is O or
1.

1, ifmry; > 7
=4 = 4
mbji {O, otherwise “)

Using the binary mask generated by the thresholding pro-
cess, the modification of the weights by RG expressed in
Equation (2) is replaced by Equation (5) in the task ¢. Here,
® denotes the per-element product or masking.

LM} = LMo mbl
RM{ = RM{"**®mbr]
Rl = MATMUL((LM}*¢® mbl})

, (RMP**¢ © mbr})) (5)

Next, the procedure of mask learning in SFG of Mask-
RKR is shown in Figure 2b. In SFG, the intermediate activa-
tion of layer [of task ¢ is multiplied by F}/. Here, F} € RHout

Table 1: Dataset used in Experiment 3

Table 2: Results of the experiment using CIFAR-100 (Exp. 1)

) . No. of Training Test \ Ave. Acc [Params.[M]

Dataset Description Classes Data Data Method | ResNet 18 WiT Swin | ResNetI8§ ViT Swin
D. Textures Textures and Patterns 47 1,880 1,880 Single 0.833 0.857 03876 111.72 85659 11.98
GTSRB | Road signs in Germany 4 31,367 7,842 Multi Head 0727 0791 0.768 | 1122 8573 122
SVHN Digit Image 10 47217 26,040 RKR(K=2) 0794 0.843 0858 | 11.74 89.88 1.43
UCF101 Action 101 7,629 1,908 Piggyback 0.804 0838 0875 | 1471 11227 156

VGG-Flowers Flower 102 1,020 1,020 188yDac u -0 - : : :
! / Mask-RKR(K=2) | 0.781 0.840 0841 | 1128 8626 124
Mask-RKR K+ 0796 0.845 0858 | 1174 89.87 143

for the fully connected layer. First, in SFG, as in RG, the base
network is trained in ImageNet-1k. We use ImageNet-1k for
training not the mask, but only Flb““. Next, in task ¢, we learn
only the real-valued mask while keeping the base parameter
FPase learned in ImageNet-1k fixed. The real-valued mask of
Ff, mrfl, is the same size as F}!. Each real-valued mask is
passed through the hard binary thresholding function given in
Equattion (4), as in [7], to obtain the thresholded mask matrix
mbf;.

/ifter learning the mask for a given task, the weights of
the real-valued mask are no longer needed. The real-valued
mask is discarded and only the binary mask is stored.

4. EXPERIMENTS

4.1. Experiment Summary

In this paper, we conducted a comparison experiment of con-
tinual learning methods applicable to CNN and Vision Trans-
former, and an ablation experiment of the proposed method,
Mask-RKR. In the comparison experiments, we used three
models and datasets with different numbers of classes and do-
mains to compare the performance in three task incremental
continual learning settings. In the ablation experiments, we
examined the effects of the components of Mask-RKR.

In Experiment 1 and the ablation experiments, we used
CIFAR-100, which is a dataset containing 100 classes of ani-
mals, plants, devices, and vehicles. To run the experiments in
the continual learning setting, CIFAR-100 was divided into 10
tasks with 10 classes each. The image size is 32x32. We used
50,000 images for the training data and 10,000 images for the
test data. In Experiment 2, we used ImageNet-1k, which is a
large dataset containing 1,000 classes. To run the experiment
in a continual learning setting, we divided ImageNet-1k into
10 tasks, each with 100 classes. The image size is 224 x224.
We used 1,232,167 images for training data and 49,000 im-
ages for test data. In Experiment 3, we used five datasets
of different domains from the Visual Decathlon (VD) bench-
mark [12]. The VD benchmark is a benchmark that evalu-
ates the ability to solve 10 different visual domains simulta-
neously. The datasets used are shown in Table 1. The image
size is 7272 for all datasets.

In this experiment, we used three models: ResNet-
18 [13], ViT [1], and Swin Transformer [2]. ResNet-18 is
based on CNN, while ViT and Swin Transformer are based
on the architecture of Vision Transformer. Since Swin Trans-
former requires a model that corresponds to the size of the in-
put image, we used the Swin-Tiny model with a small model
size in Experiment 1, Experiment 3, and the ablation experi-
ment, and the Swin-Base model, which is a general model of
Swin Transformer, in Experiment 2. All the models used in
the experiments were pre-trained models in ImageNet-1k.

In our experiments, we compared the performance of
Mask-RKR with that of conventional continuous learning

Table 3: Results of the experiment using ImageNet-1k(Exp. 2)

Ave. Acc Params.[M]
Method } ResNet-18 ViT ~ Swin } ResNet-18 ViT Swin
Single 0.678 0.888 0.902 112.18 858.76 868.46
Multi Head 0.523 0.871 0.887 11.68 86.57 87.77
RKR(K=2) 0.545 0.885 0.892 12.20 90.71 92.34
Piggyback 0.440 0.881 0.805 15.17 113.11 113.94
Mask-RKR(K=2) 0.557 0.879 0.870 I1.75 87.10 88.35
Mask-RKR K+ 0.582 0.885 0.894 12.43 90.71 92.30

Table 4: Results of experiments on data sets from different do-
mains(Exp. 3)

Method Ave. Acc Params.[M]
esNet- i win esNet- i win
Single 0.776 0.816 0.842 111.91 857.39 594.62
Multi Head 0.567 0.625 0.682 11.32 85.89 59.59
RKR(K=2) 0.714 0.791 0.840 11.58 87.97 61.49
Piggyback 0.723 0.809 0.839 13.07 99.16 68.75
Mask-RKR(K=2) 0.695 0.775 0.824 11.38 86.36 60.02
Mask-RKR K+ 0.720 0.778 0.831 11.52 87.67 61.39

methods. “Single” is a method in which each task is trained
with a separate model. “Multi Head” is a method in which
only the final output layer is trained for each task. “RKR” [6]
is a method to modify the weights and intermediate activa-
tions of the network for each task. In all the experiments, the
rank K of the low-rank approximation was K = 2, which
has the lowest number of parameters. ‘Piggyback” [7] is
a method to transform the output by applying the learned
weight mask. The threshold of the hard binary threshold
function was set to 5e-3 as in [7]. “Mask-RKR” is a method
in which the number of parameters is reduced by applying
Piggyback to the base RKR. The threshold 7 of the hard
binary threshold function of Piggyback is set to 5e-3 as in
“Piggyback”. The rank K of the low-rank approximation
was tested in two cases: the first was “Mask-RKR (K=2)”
with K = 2 and the lowest number of parameters, and the
second was ‘“Mask-RKR K+ with the same number of pa-
rameters as “RKR” by increasing the value of K. The base
parameters of all Mask-RKRs used in the experiments were
those pre-trained with ImageNet-1k.

In all the experiments, we used an SGD as an optimizer
with an initial learning rate of 3e-2 and momentum of 0.9.
The scheduler was set to linear warmup and cosine decay.
For the loss function, we used Cross Entropy Loss. The batch
size was 100. For the evaluation metric, we used the average
accuracy of all trained tasks.

4.2. Comparative experiments

In the comparative experiment, we examined the performance
of the continual learning methods on Vision Transformer.

In Experiment 1, we divided CIFAR-100 into 10 tasks
with 10 classes. We examined the performance in a relatively
simple continual learning setting, where the number of clas-
sification classes was 10 and each task was in a similar do-
main. The experimental results are shown in Table 2. “Ave.

Acc” indicates the average accuracy, and “Params.” indicates
the number of parameters. Bold values in the table are the
most accurate values. The K values of “Mask-RKR K+ are
17 for ResNet-18, 19 for ViT, and 18 for Swin Transformer.
“Multi Head” only requires a final layer for each task, so the
number of additional parameters is quite small. However, the
accuracy is inferior to the other methods, indicating that the
model cannot be successfully applied to tasks simply by re-
placing the final layer. The experimental results show that
“RKR” and “Piggyback” have higher accuracy while reduc-
ing the number of parameters. Both of them are close to each
other in performance, but “Piggyback” is better in accuracy,
and “RKR” is better in controlling the number of parame-
ters. “Mask-RKR (K=2)" has a lower accuracy than “RKR”
and “Piggyback” despite its lower parameter count. How-
ever, “Mask-RKR K+” has the same number of parameters
as “RKR”, but shows higher accuracy than “RKR”. Further-
more, Mask-RKR showed the same or better accuracy than
“Piggyback” while reducing the number of parameters. These
results show that Mask-RKR can achieve high accuracy while
minimizing the increase in the number of parameters.

In Experiment 2, we divided ImageNet-1k into 10 tasks
with 100 classes. Although each task is in a similar domain,
the number of classification classes is 100, and we verify the
accuracy of the proposed method in the continual learning
setting, which is more difficult than Experiment 1. The K
values of “Mask-RKR K+ are 3 for ResNet-18, 18 for ViT,
and 19 for Swin Transformer. The results of the experiments
are shown in Table 3. As in Experiment 1, “RKR,” “Piggy-
back” and “Mask-RKR” showed the highest accuracy overall
for all models. “Mask-RKR (K=2)" has the same accuracy as
“RKR” and “Piggyback”, but the increase in the number of
parameters is smaller. In addition, “Mask-RKR K+ showed
higher accuracy than “RKR” despite having the same number
of parameters as “RKR”. This suggests that Mask-RKR is the
most effective even in the continual learning setting, which is
a more difficult setting than Experiment 1.

In Experiment 3, the five different domains (Textures, GT-
SRB, SVHN, UCF101, and VGG-Flower) are trained in or-
der. The K values of “Mask-RKR K+ are 9 for ResNet-18,
11 for ViT, and 10 for Swin Transformer. The experimen-
tal results are shown in Table 4. As in Experiments 1 and 2,
“RKR,” “Piggyback” and “Mask-RKR” showed the highest
overall accuracy in all models. Among them, ‘“Piggyback”
showed the highest accuracy even though it has the largest
number of parameters. Comparing Experiment 1 and Experi-
ment 2, “Mask-RKR K+ was not more accurate than “RKR”.
Compared to “RKR”, which generates task-specific parame-
ters as they are, “Mask-RKR” applies a mask to the base pa-
rameters to generate task-specific parameters. Therefore, it
is thought that this is because Mask-RKR may not be flexi-
ble enough for regions that are far from the base parameters.
From this, we can say that Piggyback is the most effective in
the continual learning setting for datasets in different domains
unless the number of parameters needs to be minimized.

4.3. Ablation studies

In the ablation studies, we compared the accuracy and the
number of parameters for different components of Mask-
RKR. The experiments were conducted with a threshold
value of 7 =5e-3 for the hard binary threshold function of

Table 5: Verification results of the usefulness of Piggyback

LM RM F Ave. Acc I Params[M]
w/PB w/PB w/PB | ResNet-18 ViT — Swin | ResNet-I8 ~ ViT — Swin

X x X 0.794 0.843 0.858 11.74 89.88 143
v X X 0.792 0.848 0.859 11.55 88.51 1.37
X v X 0.792 0.842 0.850 11.51 88.51 1.35
v v X 0.780 0.844 0.846 11.33 87.07 1.28
X X v 0.794 0.845 0.858 11.69 89.15 140
v X v 0.795 0.846 0.846 11.51 89.15 1.33
X v v 0.790 0.836 0.843 11.47 87.71 131
v v v 0.781 0.840 0.841 11.28 86.26 1.24

Table 6: Verification results of where Piggyback is applied

\ Ave. Acc Params[M]
Method I 'ReNet T8 ViT Swin | ResNet18 ViT Swin
RGWoPB | 0704 0845 0858 | 1160 8005 140
R w/ PB 0.805 0845 0847 | 1441 11005 155

LMRM w/ PB 0.781 0.840 0.841 11.28 86.26 1.24

Mask-RKR and a rank of K = 2 for the low-rank approxi-
mation.

First, we verified the usefulness of Piggyback by com-
paring the case where Piggyback is applied to each of RG
and SFG of Mask-RKR with and without Piggyback. The ex-
perimental results are shown in Table 5. “LM w/ PB,” “RM
w/ PB” and “F w/ PB” indicate whether or not Piggyback is
applied to the RG and SFG parameters LM, RM, and F,
respectively. Here, the case where Piggyback is not applied
to LM, RM, and F' is the same as RKR. The experimental
results show that regardless of where Piggyback is applied,
the higher the parameter reduction effect, the lower the accu-
racy. In this experiment, we use the model with Piggyback
applied to LM, RM and F', which can reduce the number
of parameters the most, considering the application to Vision
Transformer.

Next, we compared the “R w/ PB” when Piggyback is ap-
plied directly to the weight modification parameter R in the
RG of Mask-RKR, the “LMRM w/ P” when Piggyback is ap-
plied to LM and RM, respectively, and the “RG w/o PB”
when Piggyback is not applied to RG. In all the models, Pig-
gyback is applied to SFG. The experimental results are shown
in Table 6. The experimental results show that “R w/ PB” in-
creases the number of parameters compared to “RG w/o PB”
and "LMRM w/ PB”. In addition, the accuracy of “R w/ PB”
is better than that of “LMRM w/ PB”, but is comparable to
that of “RG w/o PB”, and there is no improvement in accuracy
due to the application of Piggyback. These results indicate
that applying Piggyback to LM and RM is more effective in
RG to reduce the number of parameters.

5. CONCLUSION

In this paper, we compared continual learning methods that
can be applied to both CNN and Vision Transformer. We also
proposed Mask-RKR, which combined RKR [6] and Piggy-
back [7]. From the experiments, we found that Mask-RKR
can achieve higher accuracy than the original RKR and Piggy-
back while reducing the number of parameters. However, in
the continuous learning setting for different domains, Piggy-
back shows the highest accuracy and is more effective when
the number of parameters is not limited.

In the future, we would like to improve Mask-RKR to
make it flexible enough to handle continuous learning using
datasets from different domains.

Acknowledgment: This work was supported by JSPS KAK-
ENHI Grant Numbers, 21H05812 and 22H00548, 22K 19808.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

6. REFERENCES

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in Proc. of
International Conference on Learning Representation,
2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan
Wei, Zheng Zhang, Stephen Lin, and Baining Guo,
“Swin transformer: Hierarchical vision transformer us-
ing shifted windows,” in Proc.of IEEE Computer Vision
and Pattern Recognition, 2021.

Anthony Robins, “Catastrophic forgetting, rehearsal
and pseudorehearsal,” Connection Science, vol. 7, no.
2, pp. 123-146, 1995.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-
ing the knowledge in a neural network,” in Proc. of Neu-
ral Information Processing Systems conference, 2015.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell, “Over-
coming catastrophic forgetting in neural networks,”
Proc.of the National Academy of Sciences, 2016.

Pravendra Singh, Pratik Mazumder, Piyush Rai, and
Vinay P. Namboodiri, “Rectification-based knowledge
retention for continual learning,” in Proc.of IEEE Com-
puter Vision and Pattern Recognition, 2021.

Arun Mallya and Svetlana Lazebnik, “Piggyback:
Adding multiple tasks to a single, fixed network by
learning to mask,” in Proc.of European Conference on
Computer Vision, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in Proc. of Neural Information Processing Systems con-
ference, 2017.

Arthur Douillard, Alexandre Ramé, Guillaume Coua-
iron, and Matthieu Cord, “Dytox: Transformers
for continual learning with dynamic token expansion,”
arXiv:2111.11326,2021.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer G. Dy, and Tomas Pfister, “Learning to prompt
for continual learning,” arXiv:2112.08654, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao
Jiang, Hiroaki Hayashi, and Graham Neubig, “Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing,’
arXiv:2107.13586, 2021.

[12]

[13]

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi, “Learning multiple visual domains with resid-
ual adapters,” In Advances in Neural Information Pro-
cessing Systems, p. 506-516.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proc.of IEEE Computer Vision and Pattern Recognition,
2016.

