ICIP2022

CONTINUAL LEARNING IN VISION TRANSFORMER

The University of Electro-Communications Department of Informatics Tokyo, Japan Mana Takedea, Keiji Yanai

1. INTRODUCTON

- Deep learning models forget previously learned tasks when given a new task (catastrophic forgetting)
- Continual Learning addresses this problem by allowing users to continuously learn new tasks while retaining knowledge of previously learned tasks

1. INTRODUCTON

- Recently, the Vision Transformer, which utilizes the Transformer architecture used in natural language processing for computer vision, has shown accuracy that exceeds that of CNN
- Conventional Continual Leaning methods are generally designed to be applied to CNNs, so **methods that can be applied to Vision Transformer are limited**
- Vision Transformer, which has a larger model size than CNN, requires a larger additional model size when applying Continual Learning methods

 \rightarrow Need to suppress catastrophic forgetting with fewer parameters than conventional methods for application to CNN

1. INTRODUCTON

- Recently, the Vision Transformer, which utilizes the Transformer architecture used in natural language processing for computer vision, has shown accuracy that exceeds that of CNN
- Conventional Continual Leaning methods are generally designed to be applied to CNNs, so **methods that can be applied to Vision Transformer are limited**
- Vision Transformer, which has a larger model size than CNN, requires a larger additional model size when applying Continual Learning methods

 \rightarrow Need to suppress catastrophic forgetting with fewer parameters than conventional methods for application to CNN

Method to suppress catastrophic forgetting with few parameters applicable to Vision Transformer

3. RELATED WORK - Continual Learning -

- Continual Learning is a method of continuously learning new tasks while retaining knowledge of tasks learned in the past
 - Class incremental: a new class is added
 - Task incremental: a new task is added

3. RELATED WORK - Continual Learning -

[1] Singh et al. Rectification-based Knowledge Retention for Continual Learning. CVPR 2021

- Apply task-specific modification parameters to the base parameters
 - Rectification Generator (RG) : Parameters to modify weights
 - Scaling Factor Generator (SFG) : Parameters to modify intermediate outputs

• Piggyback

[3] Arun et al. Piggyback: Adding multiple tasks to a single, fixed network by learning to mask. ECCV 2018

- Apply the learned weight masks to the weights of the base model to transform the output
- The weight mask is represented by a binary mask, so the number of additional parameters is small

• ViT

[2] Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.

– Method directly applying the standard Transformer to a sequence of image patches

• Swin Transformer

[3] Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. CVPR 2021.

 A method that solves the problems of ViT, such as limited resolution of object detection and a large number of input patches

• DyTox

[19] Arthur et al. Dytox: Transformers for continual learning with dynamic token expansion. CVPR 2022.

- Use task-specific tokens to generate task-specific embedding

• Learning to Prompt for Continual Learning (L2P)

[20] Zifeng et al. Learning to prompt for continual learning. arXiv:2112.08654, 2021.

- Methods for applying prompt learning in the field of natural language processing
- These methods are not comparable because they are class incremental methods

4. METHOD - Method Overview -

- In this work, we propose Mask-RKR as a method to perform task incremental Continual Learning
- Mask-RKR is a method that applies Piggyback to the base RKR
- Main features of Mask-RKR
 - Adaptation to task by RKR
 - Parameter reduction by Piggyback

4. METHOD - Adaptation to task by RKR -

- Mask-RKR adapts the network to each task by using RKR as the base.
- RKR uses two generators, the Rectification Generator (RG) and the Scaling Factor Generator (SFG), to modify the weights and intermediate outputs of the network

RG Overview(1/2)

 In RG, task- and layer-specific weight modification parameters are added to the weights of each task and layer that have already been pre-trained on the large data set

RG Overview(2/2)

- Parameter reduction with **low-rank approximation**
- Learn two matrices *LM* and *RM* of small size and use their product to generate parameters for weight modification

SFG Overview

• In SFG, the intermediate output of each task and layer is multiplied by the intermediate output modification parameters specific to each task and layer

4. METHOD - Parameter reduction by Piggyback -

- Piggyback transforms the output by applying a learned weight mask to the base weights
- Mask-RKR further reduces the number of parameters by applying Piggyback to the RKR parameters

Parameter reduction in RG

Parameter reduction in SFG

5. COMPARISON WITH BASELINE - Experimental Overview -

- Experiments were conducted in three Continual Learning settings to verify the performance of Mask-RKR
- Model
 - ResNet-18, ViT, Swin Transformer
- Baseline
 - **Single** : Learning each task with a unique model
 - Multi Head : Only the final output layer is replaced for each task
 - RKR(K=2): A method to modify network weights and intermediate outputs for each task
 - **Piggyback** : A method of transforming output by applying learned weight masks
 - Ours
 - **Ours(K=2)**: Mask-RKR of the proposed method
 - **Ours K+** : Mask-RKR with the same number of parameters as "RKR" by adjusting the value of K

5. COMPARISON WITH BASELINE - Experimental Overview -

- Experiments were conducted in three Continual Learning settings to verify the performance of Mask-RKR
- Model
 - ResNet-18, ViT, Swin Transformer
- Baseline
 - **Single** : Learning each task with a unique model
 - Multi Head : Only the final output layer is replaced for each task
 - RKR(K=2): A method to modify network weights and intermediate outputs for each task
 - **Piggyback** : A method of transforming output by applying learned weight masks
 - Ours
 - **Ours(K=2)**: Mask-RKR of the proposed method
 - **Ours K+** : Mask-RKR with the same number of parameters as "RKR" by adjusting the value of K

5. COMPARISON WITH BASELINE - EX1 : Experiment using CIFAR-100 -

 Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.
– Divided into 10 tasks with 10 classes and studied in sequence (Task 1 → Task 2 → ... → Task 10)

Method \ Model		Ave. Acc		Params.[M]			
	ResNet-18	ViT	Swin	ResNet-18	ViT	Swin	
Single	0.833	0.857	0.876	111.72 (+900.00%)	856.59 (+900.00%)	11.98 (+900.00%)	
Multi Head	0.727	0.791	0.768	11.22 (+0.41%)	85.73 (+0.08%)	1.22 (+1.45%)	
RKR(K=2)	0.794	<u>0.843</u>	<u>0.858</u>	11.74 (+5.05%)	89.88 (+4.92%)	1.43 (+19.72%)	
Piggyback	0.804	0.838	0.875	14.71 (+31.65%)	112.27 (+31.07%)	1.56 (+30.29%)	
Ours(K=2)	0.781	0.840	0.841	11.28 (+1.01%)	86.26 (+0.70%)	1.24 (+3.79%)	
Ours K+	<u>0.796</u>	0.845	<u>0.858</u>	11.74 (+5.05%)	89.87 (+4.92%)	1.4 (+19.56%)	

5. COMPARISON WITH BASELINE - EX1 : Experiment using CIFAR-100 -

Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.
– Divided into 10 tasks with 10 classes and studied in sequence

(Task 1 \rightarrow Task 2 \rightarrow ... \rightarrow Task 10)

5. COMPARISON WITH BASELINE - EX1 : Experiment using CIFAR-100 -

 Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.
– Divided into 10 tasks with 10 classes and studied in sequence (Task 1 → Task 2 → ... → Task 10)

5. COMPARISON WITH BASELINE – EX2 : Experiment using ImageNet-1k -

- Using ImageNet-1k, a large dataset with 1000 classes
 - Split into 10 tasks with 100 classes and train them in sequence

(Task 1 \rightarrow Task 2 \rightarrow ... \rightarrow Task 10)

Method \ Model	Ave. Acc				Params.[M]			
	ResN	let-18	ViT	Swin	ResNet-18	ViT	Swin	
Single		0.678	0.888	0.902	112.18 (+900.00%)	858.76 (+900.00%)	868.46 (+900.00%)	
Achieve	s hig	gh ac	11.68 (+4.12%)	86.57 (+0.81%)	87.77 (+1.06%)			
minimiziı	ng pa	aram	eter incre	12.20 (+8.73%)	90.71 (+5.64%)	92.34 (+6.33%)		
Piggyba		0.440	<u>0.881</u>	0.805	15.17 (+35.22%)	113.11 (+31.71%)	113.94 (+31.20%)	
Ours(K=2)		<u>0.557</u>	0.879	0.870	11.75 (+4.71%)	87.10 (+1.42%)	88.35 (+1.74%)	
Ours K+		0.582	1 0.885	10.894	12.43 (+10.83%)	90.71 (+5.63%)	92.3 (+6.28%)	

- Use datasets from different domains
 - 5 tasks trained in sequence

(D. Textures \rightarrow GTSRB \rightarrow SVHN \rightarrow UCF101 \rightarrow VGG-Flower)

6. ABLATION EXPERIMENT - Verification of the usefulness of the mask -

- The usefulness was verified by comparing RG and SFG w/ and w/o applying masks to each.
 - "RG w/ Mask": Apply mask to RG
 - "SFG w/ Mask": Apply mask to SFG
- In this experiment, the model with **Piggyback applied to RG and SFG** with the lowest number of parameters is used

	SFG w/ Mask	Ave. Acc			Params.[M]		
w/ Mask		ResNet- 18	ViT	Swin	ResNet- 18	ViT	Swin
x	X	0.794	0.843	0.858	11.74 (+5.05%)	89.88 (+4.92%)	1.43 (+19.72%)
\checkmark	x	0.780	<u>0.844</u>	<u>0.846</u>	11.33 (+1.38%)	87.07 (+1.64%)	1.28 (+6.59%)
x	\checkmark	0.794	0.845	0.858	11.69 (+4.68%)	89.15 (+4.08%)	1.40 (+17.20%)
\checkmark	\checkmark	<u>0.781</u>	0.840	0.841	↓ 11.28 (+1.01%)	86.26 (+0.70%)	+ 1.2/ (+3.79%)

• Verified where masks are applied in RG

(1) Not applied

(2) Applied to weight modified parameters

(3) Applied to low-rank approximated parameters (Mask-RKR)

• To reduce the number of parameters, it is more effective to apply Piggyback to each of LM and RM

Method		Ave. Acc		Params.[M]			
	ResNet- 18	ViT	Swin	ResNet- 18	ViT	Swin	
(1)	0.794	0.845	0.858	11.69 (+4.68%)	89.15 (+4.08%)	1.40 (+17.20%)	
(2)	0.805	0.845	0.847	14.41 (+29.00%)	110.05 (+28.48%)	1.55 (+29.32%)	
(3)	0.781	0.840	0.841	11.28 (+1.01%)	86.26 (+0.70%)	1.24 (+3.79%)	

• Verified where masks are applied in RG

(1) Not applied

- (2) Applied to weight modified parameters
- (3) Applied to low-rank approximated parameters (Mask-RKR)

• To reduce the number of parameters, it is more effective to apply Piggyback to each of LM and RM

Method		Ave. Acc		Params.[M]			
	ResNet- 18	ViT	Swin	ResNet- 18	ViT	Swin	
(1)	0.794	0.845	0.858	11.69 (+4.68%)	89.15 (+4.08%)	1.40 (+17.20%)	
(2)	➡ 0.805	➡ 0.845	➡ 0.847	14.41 (+29.00%)	110.05 (+28.48%)	1.55 (+29.32%)	
(3)	0.781	0.840	0.841	+11.28 (+1.01%)	86.26 (+0.70%)	+3.79%)	

7. CONCLUSION

- We proposed Mask-RKR, a continual learning method that can be applied to both CNN and Vision Transformer
- Experimental results show that Mask-RKR can achieve higher accuracy than conventional methods while minimizing the increase in the number of parameters
- In the future, we would like to improve Mask-RKR to make it flexible enough to handle continuous learning using datasets from different domains

