Parallel Queries for Human-Object Interaction Detection

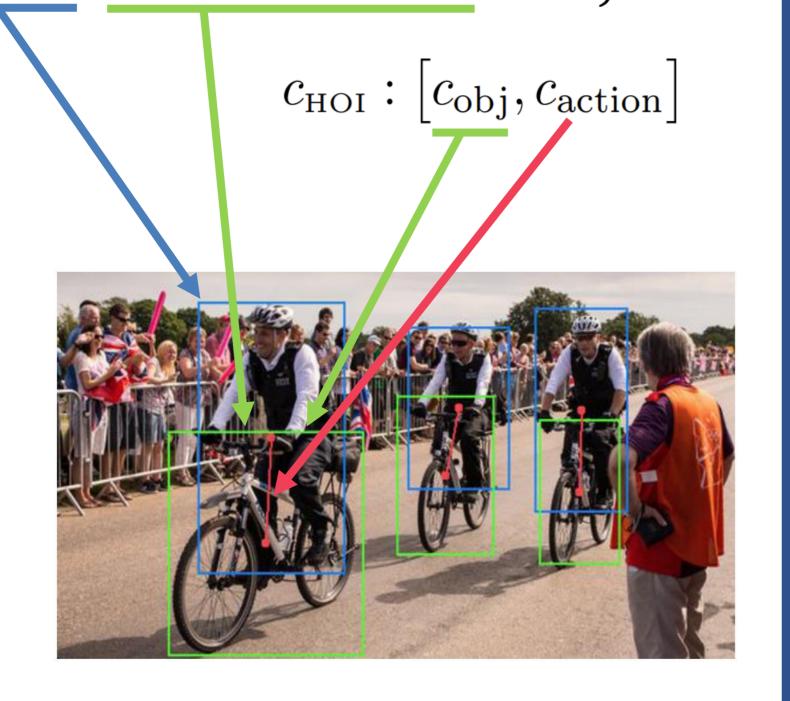
Junwen Chen, Keiji Yanai **Department of Informatics** The University of Electro-Communications

Tokyo, Japan

HOI Detection

 $\left\{ \left[x_1^{\text{human}}, y_1^{\text{human}}, x_2^{\text{human}}, y_2^{\text{human}} \right], \left[x_1^{\text{obj}}, y_1^{\text{obj}}, x_2^{\text{obj}}, y_2^{\text{obj}} \right], c_{\text{HOI}} \right\}$

hosing a car chasing a bird



QPIC

Interaction detection heads

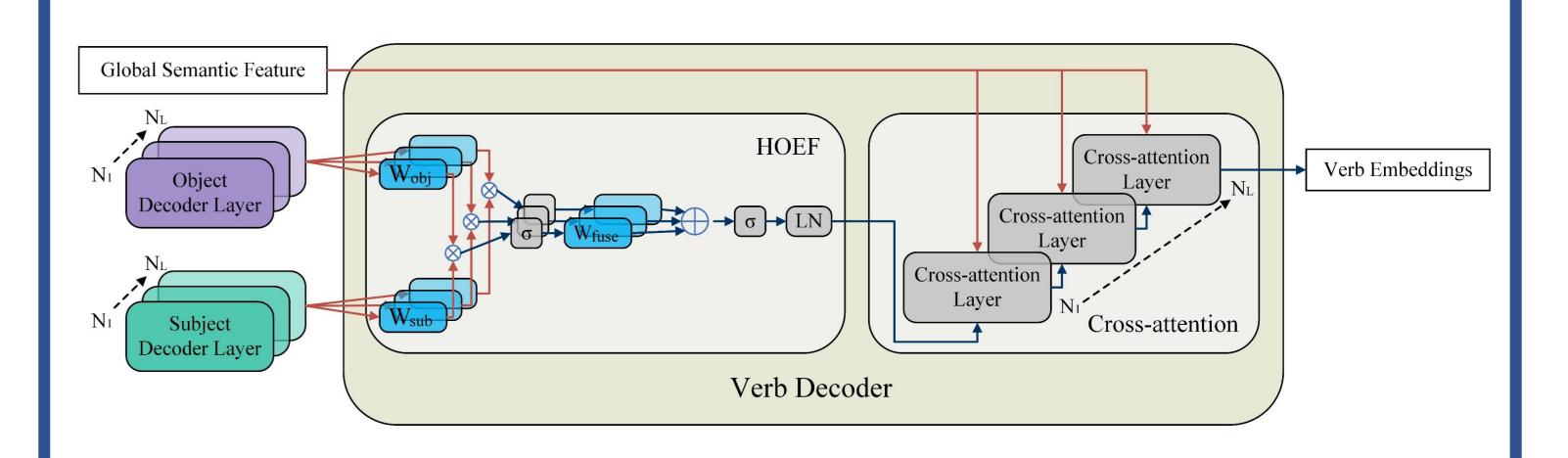
Human box FFN

Object box FFN

Object class FFN

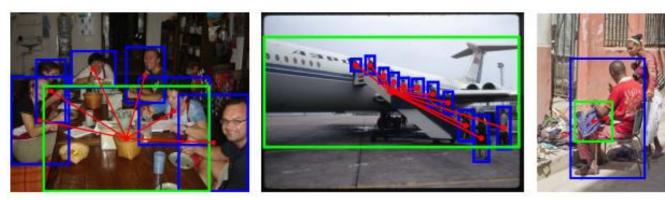
Action class FFN

Verb Decoder



The HOEF module fuses the last layer's embeddings from the object decoder and subject decoder

feeding a bird exiting an airplane petting a bird



eating at a dining table boarding an airplane repairing an umbrella

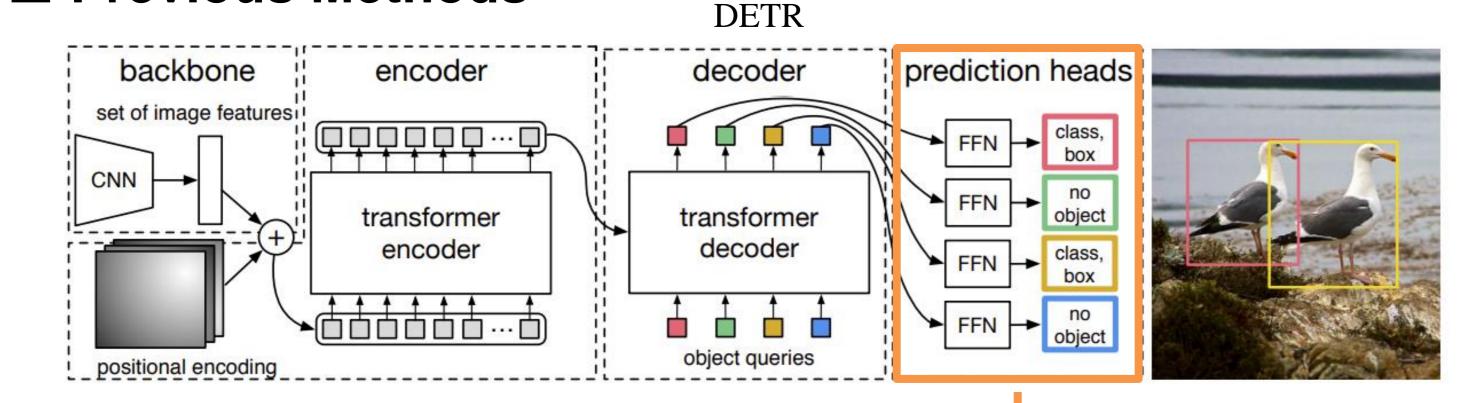
- Human-object interaction (HOI) detection has recently received increasing attention as a field with great potential applications
- HICO-DET is the most widely used dataset for HOI detection

riding a bicycle

- Training set: 38,118 images, Test set: 9,658 images
- HOI class: 600 classes consisting of 117 verbs and 80 objects

Motivation

Previous Methods

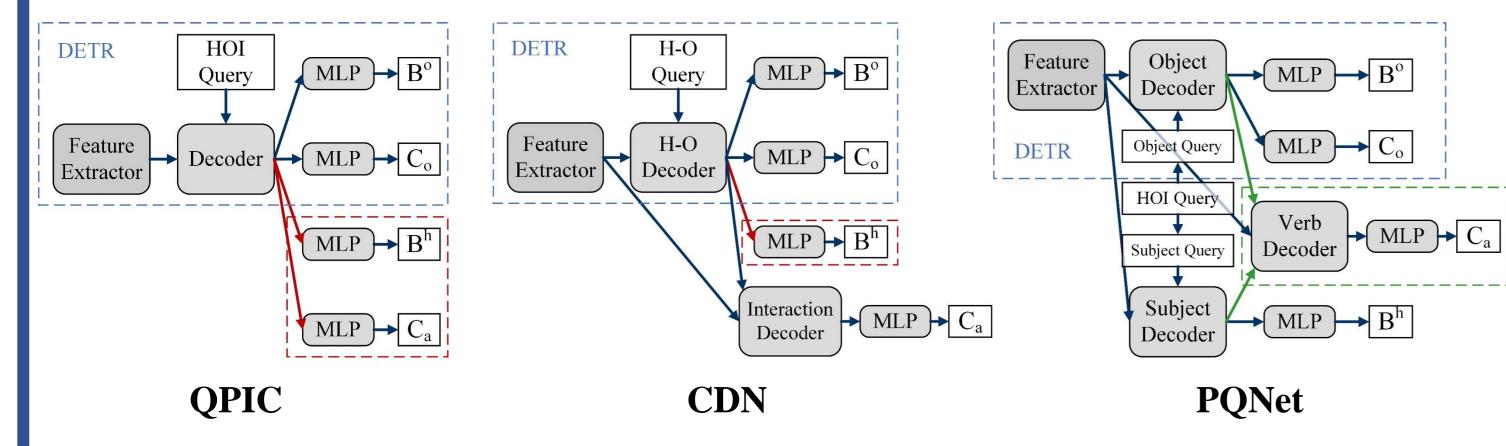


- The cross-attention module calculates the attention between the global semantic feature and the fused embeddings layer by layer
- The verb embeddings from the last layer of cross-attention are used to predict the verb classes of HOI instances

Results

	Fine-tuned			Default		Known Object			
Method	Detector	Backbone	Feature	Full	Rare	Non-Rare	Full	Rare	Non-Rare
Two-stage									
No-Frills [8]	×	ResNet-152	A+S+P	17.18	12.17	18.68	-	-	-
RPNN [32]	×	ResNet-50	A+P	17.35	12.78	18.71	-	-	-
PMFNet [26]	×	ResNet-50-FPN	A+S+P	17.46	15.65	18.00	20.34	17.47	21.20
VSGNet [25]	×	ResNet-152	A+S	19.80	16.05	20.91	-	-	-
FCMNet [18]	×	ResNet-50	A+S+L	20.41	17.34	21.56	22.04	18.97	23.12
ACP [13]	×	ResNet-152	A+P+L	20.59	15.92	21.98	-	-	-
DJ-RN [15]	×	ResNet-50	A+S+P	21.34	18.53	22.18	23.69	20.64	24.60
PD-Net [30]	×	ResNet-152	A+S+P+L	22.37	17.61	23.79	26.86	21.70	28.44
DRG [5]	1	ResNet-50-FPN	A+S+L	24.53	19.47	26.04	27.98	23.11	29.43
SCG [29]	1	ResNet-50-FPN	A+S	31.33	24.72	33.31	34.37	27.18	36.52
One-stage									
PPDM [16]	✓	Hourglass-104	A	21.73	13.78	24.10	24.58	16.65	26.84
GGNet [31]	1	Hourglass-104	A	23.47	16.48	25.60	27.36	20.23	29.48
HOITrans [34]	1	ResNet-101	A	26.61	19.15	28.84	29.13	20.98	31.57
HOTR [12]	1	ResNet-50	A	25.10	17.34	27.42	-	-	-
AS-Net [4]	1	ResNet-50	A	28.87	24.25	30.25	31.74	27.07	33.14
QPIC [24]	1	ResNet-50	A	29.07	21.85	31.23	31.68	24.14	33.93
QPIC [24]	1	ResNet-101	A	29.90	23.92	31.69	32.38	26.06	34.27
CDN-S [28]	1	ResNet-50	A	31.44	27.39	32.64	34.09	29.63	35.42
CDN-B [28]	1	ResNet-50	A	31.78	27.55	33.05	34.53	29.73	35.96
CDN-L [28]	1	ResNet-101	A	32.07	27.19	33.53	34.79	29.48	36.38
PQNet-S	1	ResNet-50	A	31.92	28.06	33.08	34.58	30.71	35.74
PQNet-B	 ✓ 	ResNet-50	A	32.13	29.43	32.93	34.68	32.06	35.47
PQNet-L	1	ResNet-101	A	32.45	27.80	33.84	35.28	30.72	36.64

- Transformer-based object detection method, DETR, opens up a new path for object detection by viewing the object detection as a set prediction problem
- QPIC replaces the detection head of DETR with an interaction head

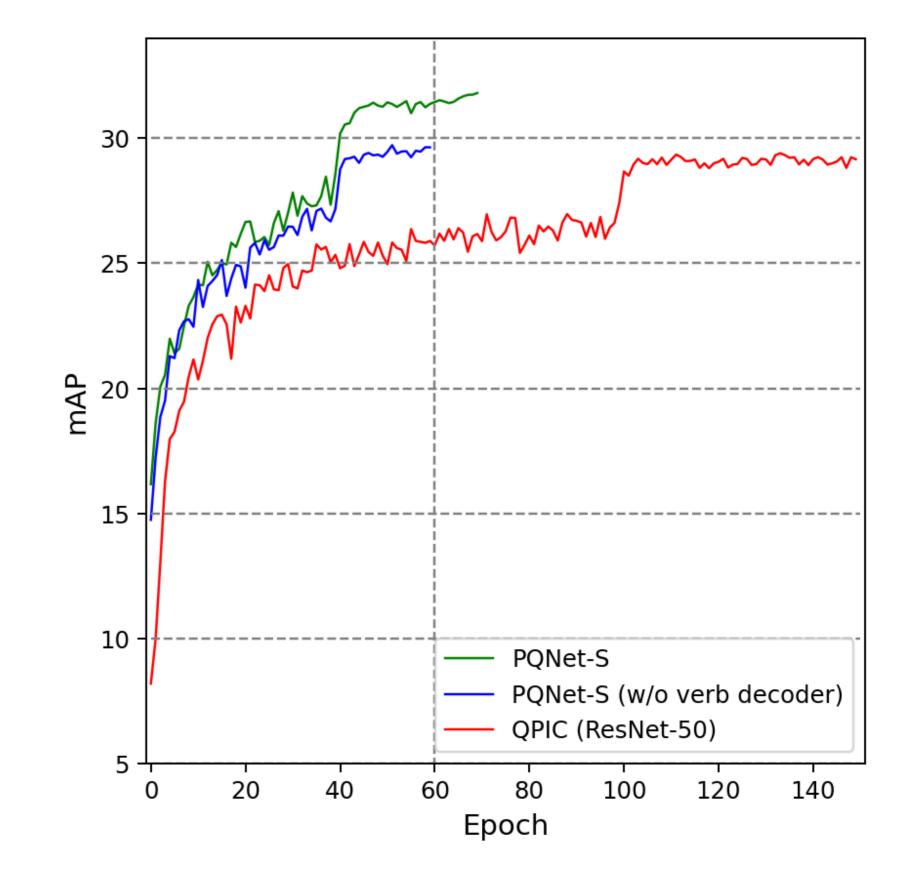


- Previous methods modify the decoding part or change the decoding target of DETR
- The training of these models needs to adapt the object detection part to a new target which leads to slower convergence

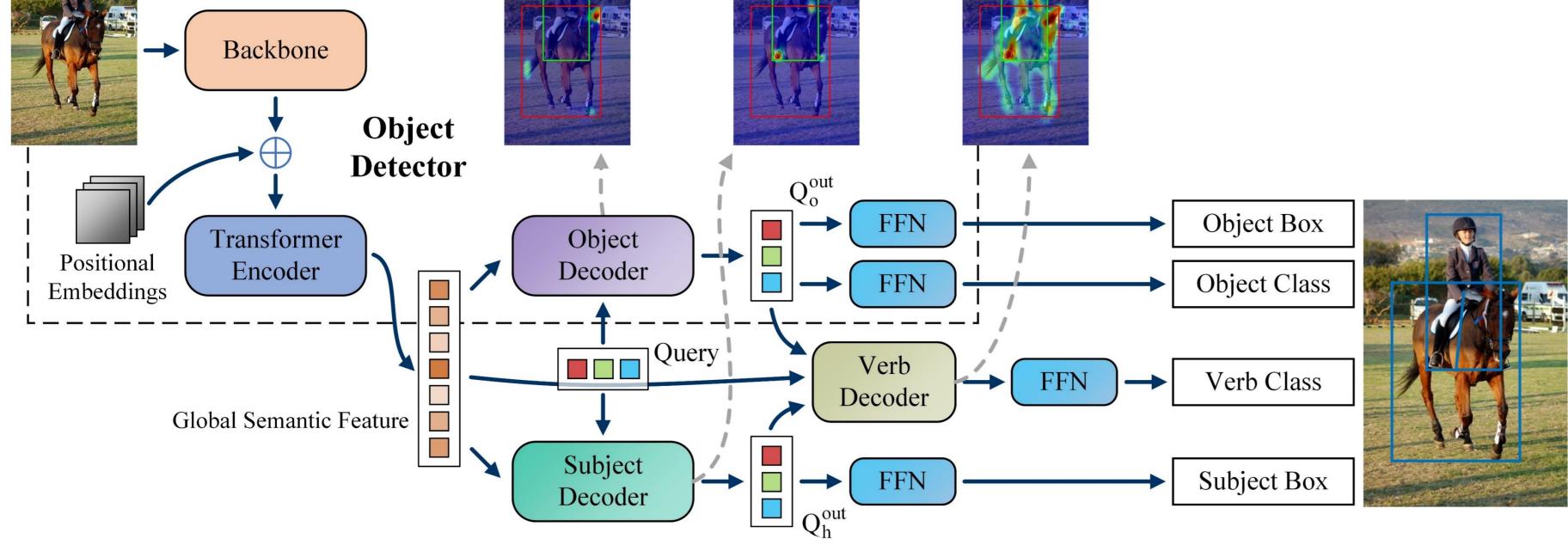
Comparing to recent one-stage methods, PQNet-B exceeds QPIC (ResNet-50) and CDN-B by 3.06 mAP (relatively 10.5%) and 0.35 mAP (relatively 1.1%), respectively PQNet-L achieves 32.45 mAP, 0.38 mAP (relatively 1.2%) higher than CDN-L

(<i>a</i> ₁)	(a_2)	(<i>b</i> ₁)	(b_2)	(<i>b</i> ₃)
	1			
	1		-	

- Attention visualization of the decoders' last layer
- (a1) and (a2) are from CDN's instance decoder and interaction decoder
- (b1), (b2), and (b3) are from PQNet's object decoder, subject decoder, and verb decoder
- PQNet learned to focus on the extreme points of the target
- The verb decoder focuses on the whole part of the human and object but pays more attention to the interaction regions



PQNet



- PQNet comprises four parts, the object detector, subject decoder, verb decoder, and feed-forward network (FFN) heads
- The object decoder and subject decoder uses the global semantic feature to predict the object boxes and human boxes with the FFN head, respectively
- The verb decoder fuses the object and subject embeddings and extracts the verb representations from the global semantic feature
- The training process of PQNet and QPIC PQNet-S achieves more than twice mAP at the first epoch and shows a fast convergence in the first 40 epochs before the learning rate drops