Zero-shot Font Style Transfer with a Differentiable Renderer Kota Izumi, Keiji Yanai The University of Electro-Communications, Tokyo, Japan

- A method of style transfer using only text is proposed.
- However, when input are text images, font shape does not change significantly.

Objective

Realize style transfer of font images without

Result

- Use pretrained CLIP model
- Training time \rightarrow **100s** per image on a RTX2080Ti

style image but only with input texts

Method

- The parameters of the Bézier curves are optimized.
- The loss is calculated using image and text encoders of CLIP[1].

For simple logos

• Each curve is represented by a line thickness, position of control points, color, and opacity.

Directional CLIP loss L_{dir} & Patch CLIP loss L_{patch} \rightarrow Force the font texture match a prompt text.

Effect of adjectives

Weight change of Distance Transform Loss

Increase the weight \rightarrow characters becomes thin

Distance Transform Loss L_{distance}

 \rightarrow Preserve the shape of the input fonts.

Total Loss

$$L_{\text{total}} = \lambda_d L_{\text{dir}} + \lambda_p L_{\text{patch}} + \lambda_{distance} L_{\text{distance}} + \lambda_{tv} L_{\text{tv}}$$

 $L_{tv} \rightarrow$ Total variation regularization loss $\lambda \rightarrow$ Loss weight

[1] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021. [2] Li, Tzu-Mao, et al. "Differentiable Vector Graphics Rasterization for Editing and Learning." ACM Trans. Graph, 2020.