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Abstract. Cross-modal recipe retrieval aims to exploit the relationships and ac-
complish mutual retrieval between recipe images and texts, which is clear for
human but arduous to formulate. Although many previous works endeavored to
solve this problem, most works did not efficiently exploit the cross-modal in-
formation among recipe data. In this paper, we present a frustratingly straight-
forward cross-modal recipe retrieval framework, Transformer-based Network for
Large Batch Training (TNLBT) achieving high performance on both recipe re-
trieval and image generation tasks, which is designed to efficiently exploit the
rich cross-modal information. In our proposed framework, Transformer-based en-
coders are applied for both image and text encoding for cross-modal embedding
learning. We also adopt several loss functions like self-supervised learning loss
on recipe text to encourage the model to further promote the cross-modal embed-
ding learning. Since contrastive learning could benefit from a larger batch size
according to the recent literature on self-supervised learning, we adopt a large
batch size during training and have validated its effectiveness. The experimental
results showed that TNLBT significantly outperformed the current state-of-the-
art frameworks in both cross-modal recipe retrieval and image generation tasks
on the benchmark Recipe1M by a huge margin. We also found that CLIP-ViT
performs better than ViT-B as the image encoder backbone. This is the first work
which confirmed the effectiveness of large batch training on cross-modal recipe
embedding learning.

Keywords: cross-modal recipe retrieval, transformer, vision transformer, image
generation

1 INTRODUCTION

Cross-modal recipe retrieval investigates the relation between recipe texts and recipe
images to enable mutual retrieval between them. Recipe1M dataset [20, 16] is fre-
quently used as a benchmark to evaluate the performance of cross-modal recipe retrieval
frameworks. One challenge of the recipe retrieval task is that food images usually con-
tain many non-food parts like plates and different backgrounds as noise. The recipe
texts are perplexing, making them difficult to encode, since there are three components
in the recipe text: title, ingredients, and instructions, the last two of which are long and
structured texts. Most existing works focus just on recipe or image embedding learning,
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though we believe that a framework that focuses on both recipe and image embedding
learning is necessary.

As one of the early works Salvador et al. [20] proposed Joint Embedding (JE), pro-
jecting embeddings from both modalities into a common shared space and minimizing
the cosine similarity between them to enable cross-modal recipe retrieval. GAN [7] was
introduced in some recent works [27, 24, 22] for food image synthesis from embeddings
to obtain more reliable cross-modal embeddings. By confirming if the same or similar
embeddings can be extracted from the food images generated from cross-modal em-
beddings, the retrieval performance were improved. Furthermore, modality adversarial
loss was introduced in ACME [24] which can narrow the modality gap between image
and text embedding. Inspired by the success of GAN-based image synthesis in recipe
retrieval, we also adopt GAN-based image synthesis in this work. However, regard-
ing recipe text embedding, LSTM [8] was simply applied for encoding recipe texts in
these works [27, 24, 22], which sometimes limits leveraging the information in long and
structured recipe texts. In order to address this issue, some other methods [6, 26, 19] fo-
cused on improving recipe embedding learning. Authors of MCEN [6] applied attention
mechanism, and Zan et al. [26] applied BERT [4] for recipe encoding. With the trend
of Transformer [23] in natural language processing, X-MRS [9] and H-T [19] were re-
cently proposed to adopt this technique in recipe retrieval. Authors of H-T in particular
introduced a simple but effective framework with a Transformer-based structure recipe
encoder and self-supervised learning, allowing the model to explore complementary in-
formation among recipe texts. Inspired by H-T, we adopt a Transformer-based recipe
encoder and self-supervised learning for recipe embedding learning.

In this paper, we propose a frustratingly straightforward Transformer-based frame-
work that uses all the current state-of-the-art techniques. That is, we use a hierarchical
transformer architecture recipe encoder for recipe embedding learning, and an adver-
sarial network to investigate the complementary information between recipe and image
embedding. In the experiments, we adopt ViT [5] and CLIP-ViT [18] as the image
encoder backbone to validate the effectiveness the proposed framework. Since con-
trastive learning benefits from larger batch sizes according to the recent work on self-
supervised learning [2] and self-supervised learning and triplet losses are used in the
proposed framework, we adopt large batch training in our experiments. Furthermore,
we conducted extensive experiments and ablation studies to further validate the effec-
tiveness of our proposed framework. We discovered that large batch training was sur-
prisingly effective for Transformer-based cross-modal recipe embedding. The results
showed that our proposed framework outperformed the state-of-the-arts both in recipe
retrieval (medR 1.0, R1 56.5 in 10k test set size) and image generation tasks (FID score
16.5) by a large margin. More specifically, we summarize the contributions of this work
as follows:

1. We proposed a frustratingly straightforward Transformer-based cross-modal recipe
retrieval framework, Transformer-based Network for Large Batch Training (TNLBT),
which achieves the state-of-the-art performance on both recipe retrieval and image
generation tasks.

2. We conducted experiments with large batch inspired by the effectiveness of large
batch training on contrastive learning [2].
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3. Through the comprehensive experiments, we confirmed that the proposed frame-
work outperforms the current state-of-the-arts with a large margin, especially in the
case of a large batch size, 768. This is the first work which confirmed the effective-
ness of large batch training on cross-modal recipe retrieval as far as we know.

2 RELATED WORK

2.1 Cross-Modal Recipe Retrieval

Cross-modal retrieval aims to enable mutual retrieval between two different modalities,
often image and text. The common idea of cross-modal retrieval is to embed features
from two different modalities into a shared common space while keeping the distribu-
tion of corresponding embedded features close to enable mutual retrieval. A substantial
issue in this task is how to narrow the gap between the various modalities [11].

Salvador et al., who was the first to propose the cross-modal recipe retrieval task
and the Recipe1M dataset, proposed joint embedding [20] to enable cross-modal recipe
retrieval. This method was modified in AdaMine [1] by using a triplet loss [21] to im-
prove the retrieval accuracy. In order to further exploit the information in the Recipe1M
dataset, some state-of-the-art techniques like Transformer [23] and Generative Adver-
sarial Networks (GAN) [7] are used in recipe retrieval. GAN, enables image generation
conditioned on recipe embedding in recipe retrieval framework. GAN was introduced
in several previous works [27, 24, 22], which improves retrieval accuracy while en-
abling image generation conditioned on recipe text. The issues of these previous works
are, the retrieval accuracy and quality of generated images are very limited since they
only adopted simple LSTM [8] for text embedding learning. However, in our proposed
method we obtain generated images of better quality using Transformer.

Rather than incorporating complex networks like GAN, some research [6, 26, 19]
focus on recipe embedding learning to enhance the performance of retrieval tasks. Au-
thors of MCEN[6] introduced cross-modal attention and consistency and Zan et al. [26]
introduced BERT [4] as a recipe encoder to enable cross-modal retrieval. Authors of X-
MRS [9] introduced a Transformer [23] encoder to gain recipe embedding, further pro-
posed the use of imperfect multilingual translations, and achieved state-of-the-art per-
formances on retrieval tasks. Salvador et al. proposed a simply but effective framework
H-T [19], to facilitate the power of Transformer. However, authors of these works [6,
26, 19] just simply applied bi-directional triplet loss on image and recipe features with-
out image synthesis and reconstruction, which somewhat limited the cross-modal in-
formation learning between recipe and image features. In order to address this issue,
we introduce GAN-based architecture to enhance the cross-modal embedding learn-
ing in our architecture in addition to adopting Transformer-based recipe encoders and
self-supervised learning on recipe-only samples in the Recipe1M.

2.2 Food Image Synthesis

GAN [7] has been introduced and proven its effectiveness for improving recipe retrieval
performance in some recent works [27, 24, 22, 9]. Authors of R2GAN [27], ACME [24]
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Fig. 1: The architecture of proposed network TNLBT. Training process is controlled
by the four loss functions Lrec, Lret, LMA, Ltrans .

and X-MRS [9] applied text-conditioned image synthesis which generates recipe im-
ages from recipe embeddings, while authors of RDE-GAN [22] proposed to disentan-
gle image features into dish shape features, which contained only non-recipe informa-
tion, and recipe embeddings and to integrate both of them to generate recipe images.
Similar to ACME and RDE-GAN, we also leverage GAN in our proposed framework
to improve retrieval accuracy while enabling image generation conditioned on recipe
text. The biggest difference between our work and the previous works is, we applied
Transformer-based encoders to further improve the quality of generated images com-
pared to the previous works [24, 22].

3 Method

3.1 Overview

We propose a frustratingly straightforward Transformer-based framework TNLBT for
cross-modal recipe retrieval which has the hierarchical Transformers for text encod-
ing, and Vision Transformer (ViT) [5] as an image encoder. Furthermore, we pro-
pose to adopt large batch training which is confirmed to be beneficial for contrastive
training and Transformer-based networks. Figure 1 shows the architecture of the pro-
posed framework. Similar to H-T [19], our proposed framework applies hierarchical
Transformer encoders and a triplet loss Lrec with self-supervised learning to explore
complementary information in the recipe text. ViT-B [5] or CLIP-ViT [18] is used
as the backbone of image encoder. The biggest difference between our work and H-
T [19] is, we introduce a more sophisticated adversarial network to leverage the learned
Transformer-based embeddings. Rather than just a bi-directional triplet loss is adopted
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in H-T for the distance learning of image and recipe embeddings, we further introduce
several loss functions to enhance the cross-modal embedding learning and enable im-
age generation conditioned on recipe text. Inspired by the success of triplet loss [21], a
triplet loss Lret for distance learning in image-recipe retrieval is applied in the retrieval
space. In order to mitigate the modality gap problem, we use the modality alignment
loss function LMA as in ACME [24]. Furthermore, we introduce image-to-recipe and
recipe-to-image information recover, and a translation consistency loss function Ltrans

to keep modality-specific information. We expect that the embeddings learned in the
above process correctly retains the original information and enables image generation
from recipe embeddings. Finally the overall loss function can be formulated as follows:

Ltotal = λ1Lrec + λ2LMA + λ3Ltrans + Lret, (1)

where λ1, λ2, λ3 are hyperparameters to control the loss balance.

3.2 Recipe Encoder and Self-Supervised Learning

The purpose of the recipe encoder, ER (even though we adopt several encoders here,
we note these as a whole recipe encoder ER), is to encode recipe text, t, to recipe em-
beddings, R. In order to better explore and make use of the huge information among
recipe text with components of title, ingredients, and instructions, we adopt the hierar-
chical Transformers as the recipe encoder similar to H-T [19]. Note that we introduced
an adversarial network for image synthesis and modality alignment better to exploit the
correlation in image-recipe pairs, while H-T simply applied a bi-directional triplet loss
function to image-recipe pairs.

For the three components (title, ingredients, instructions) in the recipe texts, the pro-
posed framework TNLBT encodes them separately using hierarchical Transformer en-
coders (Ettl, Eing, Eins), with 2 layers and 4 attention heads, to obtain embeddings of
title, ingredients and instructions (ettl, eing, eins) initially. Next, we apply self-supervised
recipe loss Lrec as in H-T, on ettl, eing, eins to explore the complementary information
among them. The introduction of this loss allows us to use recipe-only image-recipe
pairs to further leverage the complementary information among the three components
of the recipe text. Finally, we apply a merging encoder Emrg to project three compo-
nents embeddings (ettl, eing, eins) to an unified recipe embedding, R.

3.3 Image Encoder

The purpose of the image encoder EV is to encode recipe image i to image embedding
V. We adopt the base size model of Vision Transformer (ViT-B) [5] pre-trained on
ImageNet-21k [3] as the image encoder backbone. In order to better leverage the benefit
of large batch training, we also adopt CLIP-ViT [18] as image encoder backbone where
the proposed framework achieved superior performance on retrieval task.

3.4 Modality Alignment Loss

For the purpose of narrowing the gap between recipe and image embeddings, which
often results in bad generalization or slow convergence, we applied modality alignment
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loss LMA as in ACME [24]. We adopt a discriminator DM here to achieve this goal,
which aligns the distribution of recipe embeddings R = ER(t) and image embeddings
V = EV (i) during training. An adversarial loss is applied by controlling the recipe
and image embeddings aligned to each other resulting in the discriminator DM cannot
distinguish the source of the given embeddings empirically. Following ACME, we also
adopt WGAN-GP [10] here and the loss function is formulated as follows:

LMA = Ei∼p(i)[log(1 − DM (EV (i)))] + Et∼p(t)[log(1 − DM (ER(t)))] (2)

3.5 Retrieval Loss

Following the success of triplet loss [21] in the recent works [1, 24, 22, 19], we adopt a
triplet loss for distance learning. Here we obtain the recipe and image embeddings R =
ER(t), V = EV (i). We obtain an anchor recipe embedding Ra and an anchor image
embedding Va, and obtain a negative sample with subscript n and a positive sample
with subscript p to process this distance learning. The loss function is formulated as
follows:

Lret =
∑
V

[d(Va, Rp)− d(Va, Rn) + α]++∑
R

[d(Ra, Vp)− d(Ra, Vn) + α]+ , (3)

where margin α = 0.3, d(.) is the Euclidean distance, [x]+ = max(x, 0). In addition,
we adopt a hard sample mining strategy [12] to further facilitate the distance learning.

3.6 Translation Consistency Loss

The learned embeddings are useful for training but sometimes lost the modality-specific
information which is meaningful and important. To alleviate this information loss, we
adopt translation consistency loss following ACME [24], which ensures the learned
embeddings preserve the original information across modalities. We accomplish this
goal by forcing the recipe and image embeddings to recover the information in the other
modalities: recipe image generation and ingredients prediction conditioned on recipe
embedding and image embedding respectively. Hence, the total translation consistency
loss is composed of the losses for the recipe and the image as follows:

Ltrans = Ltransr + Ltransi (4)

Image Generation from Recipe Embeddings In order to preserve the modality-
specific information in recipe embeddings, we aim to recover the information in image
modality to ensure this property, and we set two losses as for two-fold goal: (1) we ex-
pect the generated image is as realistic as possible, (2) we expect the generated realistic
image matches the target recipe. To accomplish these two goals, we adopt GAN [7] to
generate images from recipe embeddings and introduce a loss Lr2i for goal (1) and a
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loss Lclsr2i for goal (2) following ACME [24]. During training, the discriminator Dr2i

is used to distinguish the generated image and real image, and the generator G is used
to generate food images which is conditioned on the recipe embedding FC(ER(r)).
The loss Lr2i for ensuring the generated images realistic is formulated as follows:

Lr2i = Ei∼p(i)[log(1 − Dr2i(i))] + Et∼p(t)[log(1 − Dr2i(G(FC(ER(t)))))] (5)

While ensuring the generated image is as realistic as possible, we introduce loss Lclsr2i

to ensure that the generated image matches the target recipe. During training, a clas-
sifier clsr2i is used to encourage the generator to generate a food image with the cor-
responding food category to recipe embedding. Lclsr2i is simply a cross-entropy loss.
Combining these two loss functions for two goals separately, the translation consistency
loss for the recipe is formulated as follows:

Ltransr = Lr2i + Lclsr2i (6)

Classification and Prediction from Image Embeddings We adopt ingredients pre-
diction and title classification on image embeddings here for ensuring the translation
consistency of images. We leverage a multi-label network here to predict the ingredi-
ents from image embeddings using a 4,102-d one-hot vector representing the existence
of 4,102 different ingredients. We denote this multi-label objective as Li2r.

The same as ensuring the generated image is with the correct food category in defin-
ing Lclsr2i , we propose to ensure the predicted ingredients are from the food with the
correct category, which means the image embeddings can be classified into the cor-
rect food category. We use Lclsi2r here to make sure the image embeddings can be
classified into one correct food category of 1,047 recipe categories, where Lclsi2r is a
cross-entropy loss. Combining these two loss functions, the translation consistency loss
for the image is formulated as follows:

Ltransi = Li2r + Lclsi2r (7)

4 EXPERIMENTS

In this section, we present the experiments to validate the effectiveness of our proposed
framework TNLBT both in recipe retrieval and image generation tasks, including ab-
lation studies and comparison with the previous works. Extensive experiments are also
performed to further validate the effectiveness of TNLBT.

4.1 Implementation Details

Data set. We evaluated the performance of our proposed method on Recipe1M [20,
16] following the previous works. Following the official dataset splits, we used 238,999
image-recipe pairs for training, 51,119 pairs for validation, and 51,303 pairs for testing.
Evaluation Metrics. Following previous works, we evaluated retrieval performance
with the median rank (medR) and R@{1,5,10} on two different test set sizes 1k and
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Table 1: Comparison with the existing works on retrieval performance. The perfor-
mance of recipe retrieval is evaluated on the criteria of medR(↓) and R@{1,5,10}(↑).
Especially all the R@K metrics were all improved by around 10.0% in TNLBT-C com-
pared to TNLBT-V.

1k 10k
Image-to-Recipe Recipe-to-Image Image-to-Recipe Recipe-to-Image

medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10

JE [20] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0 41.9 - - - 39.2 - - -
R2GAN [27] 2 39.1 71.0 81.7 2 40.6 72.6 83.3 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8
MCEN [6] 2 48.2 75.8 83.6 1.9 48.4 76.1 83.7 7.2 20.3 43.3 54.4 6.6 21.4 44.3 55.2
ACME [24] 1 51.8 80.2 87.5 1 52.8 80.2 87.6 6.7 22.9 46.8 57.9 6 24.4 47.9 59.0
SCAN [25] 1 54.0 81.7 88.8 1 54.9 81.9 89.0 5.9 23.7 49.3 60.6 5.1 25.3 50.6 61.6
IMHF [15] 1 53.2 80.7 87.6 1 54.1 82.4 88.2 6.2 23.4 48.2 58.4 5.8 24.9 48.3 59.4
RDEGAN [22] 1 59.4 81.0 87.4 1 61.2 81.0 87.2 3.5 36.0 56.1 64.4 3 38.2 57.7 65.8
H-T [19] 1 60.0 87.6 92.9 1 60.3 87.6 93.2 4 27.9 56.4 68.1 4 28.3 56.5 68.1
X-MRS [9] 1 64.0 88.3 92.6 1 63.9 87.6 92.6 3 32.9 60.6 71.2 3 33.0 60.4 70.7
TNLBT-V 1 75.1 92.3 95.3 1 75.2 92.5 95.4 2 48.0 73.7 81.5 2 48.5 73.7 81.5
TNLBT-C 1 81.0 95.2 97.4 1 80.3 95.2 97.4 1 56.5 80.7 87.1 1 55.9 80.1 86.8

Table 2: Comparison with the existing
works on image generation. The perfor-
mance of image generation is evaluated on
the criteria of FID(↓).

Method FID
ACME [24] 30.7
CHEF [17] 23.0
X-MRS [9] 28.6
TNLBT-V 17.9
TNLBT-C 16.5

Table 3: Evaluation of the importance of
different components on image-to-recipe
retrieval in TNLBT. * means training with-
out recipe-only data.
Applied Components medR R@1 R@5 R@10

Lret 2.0 43.4 70.3 79.4
Lret+LMA 2.0 41.1 68.0 77.3
Lret+LMA+Lrec 2.0 43.2 70.0 79.0
Lret+LMA+Lrec+Ltransi 2.0 43.5 70.3 79.0
Lret+LMA+Lrec+Ltransr 2.0 44.5 71.3 80.2
Lret+Lrec+Ltransr+Ltransi 2.0 43.5 70.7 79.5
Lret+LMA+Lrec+Ltransr+Ltransi* 2.0 43.1 69.8 78.7
Lret+LMA+Lrec+Ltransr+Ltransi 2.0 44.3 70.9 79.7
TNLBT-V (large batch training) 2.0 48.0 73.7 81.5
TNLBT-C (CLIP-ViT applied) 1.0 56.5 80.7 87.1

Table 4: Comparison on image-to-recipe
retrieval performance with different batch
sizes adopted in TNLBT. Results are re-
ported on rankings of size 10k.

TNLBT-V TNLBT-C
#batch medR R@1 R@5 R@10 medR R@1 R@5 R@10

64 3.0 36.6 64.3 74.3 2.0 48.0 75.4 83.9
128 2.0 40.9 68.3 77.6 1.4 50.1 77.1 84.9
256 2.0 44.3 70.9 79.7 1.0 53.5 79.1 86.3
512 2.0 47.1 73.4 81.6 1.0 55.9 80.4 86.9
768 2.0 48.0 73.7 81.5 1.0 56.5 80.7 87.1
1024 2.0 47.5 73.3 81.2 1.0 56.0 79.8 86.5

Table 5: Evaluation on image generation
in different batch sizes on the criteria of
FID(↓).

#batch FID (TNLBT-V) FID (TNLBT-C)
64 17.9 16.5
128 19.3 21.9
256 27.1 30.1
512 34.4 48.6
768 46.4 69.7

10k. We reported the average metrics of 10 groups which are randomly chosen from
the test set. We also evaluated the performance of image generation conditioned on
recipe embeddings using Fréchet Inception Distance (FID) [13] score following previ-
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Fig. 2: Generated images conditioned on different recipe embeddings. The first row are
recipes used to generate images, the second row are the ground-truth images which
recipe embeddings aim to recover. The third row are the generated images.

ous works [22, 9] measuring the similarity of the distribution between generated images
and ground-truth images.
Training Details. The objective is to minimize the total loss function Eq. 1. We em-
pirically decided the hyperparameters in Eq. 1 as follows: λ1 = 0.05, λ2 = 0.005, λ3 =
0.002. For ViT-B [5] image encoder backbone framework, We trained the model for 50
epochs using Adam [14] with a learning rate of 10−4. For CLIP-ViT [18] image encoder
backbone framework, we first trained the model for 20 epochs while freezing the image
encoder with a learning rate of 10−4 and then we trained the model for another 100
epochs with a learning rate of 10−6 where the image encoder were not frozen. Since
contrastive learning benefits from larger batch sizes and more training steps compared
to supervised learning [2], batch size was set to 768 during training.

4.2 Cross-Modal Recipe Retrieval

We evaluated and compared the performance of the proposed framework TNLBT with
the previous works in Table 1. TNLBT with ViT-B [5] image encoder backbone (TNLBT-
V) outperforms all the existing works across all metrics with large margins. We also
tested the performance of our proposed framework with CLIP-ViT [18] image encoder
backbone (TNLBT-C), which outperforms all the existing works across metrics with
even much larger margins. When the image encoder backbone was changed from ViT-
B to CLIP-ViT, all the R@K metrics were all improved by around 10.0%, and medR on
10k test set size was improved to 1.0, which has never been achieved before.

4.3 Image Generation

The proposed model generates images of 128 × 128 resolutions conditioned on recipe
embeddings. We computed the FID [13] score to evaluate the image generation perfor-
mance of our proposed method1. The results are reported in Table 2, where TNLBT
outperformed the previous works [24, 17, 9] with a large margin on image generation2.

1 We used the open source code on https://github.com/mseitzer/pytorch-fid
2 We borrow the FID scores of CHEF [17] and ACME [24] reported in X-MRS [9].
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Figure 2 shows qualitative results on image generation conditioned on recipe embed-
dings, showing that TNLBT could generate appropriate recipe images corresponding to
the given ingredients in recipes.

4.4 Ablation Studies

We also performed ablation studies to evaluate the importance of the applied com-
ponents in Table 3. When LMA was applied, the accuracy decreased incrementally
while with more loss functions applied the accuracy increased again. However, when
only LMA was taken, the retrieval accuracy decreased compared to the combination
of all loss functions. Hence we empirically think there is a complementary relation-
ship among LMA and the other loss terms except Lret, contributing to the retrieval
performance. The loss combination without Ltransi applied outperforms all the other
combinations by an incremental margin. Finally, when the proposed large batch training
strategy and CLIP-ViT [18] applied, the retrieval accuracy was further improved.

4.5 Batch Size in Cross-Modal Embedding Learning

Since contrastive learning benefits from large batch size was reported in [2], we per-
formed extensive experiments here to validate the influence of batch size on both recipe
retrieval and image generation, where we are the first to validate this influence.
Recipe Retrieval. Table 4 shows the image-to-recipe retrieval performance of TNLBT
with different batch sizes. Retrieval performance was improved substantially when the
batch size increased from 64 to 512, indicating the importance of adopting large batch
during training. The improvement by increasing batch size is limited afterwards and the
performance was hurt incrementally when batch size increased to 1024.
Image Generation. We also investigated the influence of batch size on image gen-
eration performance in Table 5, where the performance of image generation hurt with
batch size increasing, while the performance of recipe retrieval improved according to
Table 4. Hence, we emperically believe that batch size serves as a trade-off here.

5 CONCLUSIONS

In this research, we proposed a frustratingly straightforward Transformer-based Net-
work for Large Batch Training (TNLBT) using the Hierarchical Transformer-based
recipe encoder, the Vision Transformer-based image encoder, and a sophisticated ad-
versarial network for cross-modal recipe embedding learning. We further adopted self-
supervised learning to investigate the complementary information in recipe texts. Through
the experiments, it was confirmed that TNLBT outperformed the state-of-the-arts on
both cross-modal recipe retrieval and food image generation tasks by large margins.
We also found that CLIP-ViT [18] achieved much better performance than ViT-B [5]
as an image encoder backbone in TNLBT. With the extensive experiments, we found
that the retrieval performance could benefit from a large batch size while the perfor-
mance of image generation conditioned on recipe embeddings sometimes got hurt by a
large batch size, where we were the first to validate the influence of batch size in recipe
retrieval and image generation tasks.
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