SHOW ROOM 11 POSTER 3

Transformer-based Cross-Modal Embedding Learning with Large Batch Training Jing Yang, Junwen Chen, Keiji Yanai The University of Electro-Communications, Tokyo, Japan

1. Introduction

- Transformer-based framework for recipe retrieval and image generation achieving current state-of-the-art
- Our findings: Larger batch size, better retrieval performance

2. Framework Architecture

- Straightforward: Hierarchical Transformer text encoder in H-T [2], adversarial network in ACME [1] and CLIP-ViT [4]
- Four loss functions to control training process
- Introduction of CLIP **further boosted** the performance **Retrieval Space** Recipe Space

3. Text encoder and Self-Supervised Learning

• Computing the bi-directional loss after projecting embeddings [2]

4. Comparison to Previous Works on Recipe Retrieval

- **Dataset:** Recipe1M [3], containing 1, 000, 000 of paired recipe data
- R@K: Recall rate at rank K, FID: Frechet Inception Distance
- TNLBT-V/ TNLBT-C: VIT-B/ CLIP-VIT backbone

10k test set size									
		Image-to-recipe			Recipe-to-image				
	FID	medR	R1	R5	R10	medR	R1	R5	R10
ACME (CVPR 2019)	30.7	6.7	22.9	46.8	57.9	6.0	24.4	47.9	59.0
H-T (CVPR 2021)	-	4.0	27.9	56.4	68.1	4.0	28.3	56.5	68.1
IMHF (ICMR 2021)	-	6.2	23.4	48.2	58.4	5.8	24.9	48.3	59.4
RDE-GAN (MM 2021)	-	3.5	36.0	56.1	64.4	3.0	38.2	57.7	65.8
X-MRS (MM 2021)	28.6	3.0	32.9	60.6	71.2	3.0	33.0	60.4	70.7
T-FOOD (CVPR 2022)	-	2.0	43.4	70.7	79.7	2.0	44.6	71.2	79.7
EOMA (ICMR 2022)	-	1.0	50.6	77.1	84.8	1.3	50.1	76.8	84.5
TNLBT-V	17.9	2.0	48.0	73.7	81.5	2.0	48.5	73.7	81.5
TNLBT-C	16.5	1.0	56.5	80.7	87.1	1.0	55.9	80.1	86.8

5. Visualization of Retrieval Results

- Sample highlighted in blue: query; sample highlighted in green: target
- Top retrieved are with high similarity to the query sample

6. Image Generation Conditioned on Recipe Text

7. The Influence of Batch Size on Performance

Image2Recipe							
#batch	MedR↓	R@1个					
64	2.0	48.0					
128	1.4	50.1					
256	1.0	53.5					
512	1.0	55.9					
768	1.0	56.5					
1024	1.0	56.0					

8. Reference

Recipes and Food Images. CVPR2019 Transformers and Self-supervised Learning. CVPR 2021 Conference on Machine Learning. vol. 139, pp. 8748–8763 (2021)

• Larger batch size leading to higher R@1 (better retrieval performance) • While the generated images start to collapse (worse image generation)

Quality of generated images drops as batch size increasing

[1] H. Wang, D Sahoo, C. Liu, E Lim, and S. Hoi. Learning Cross-Modal Embeddings with Adversarial Networks for Cooking

[2] A. Salvador, E. Gundogdu, L. Bazzani, and M. Donoser. Revamping Cross-Modal Recipe Retrieval with Hierarchical

[3] A. Salvador, N. Hynes et al. Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. CVPR 2017 [4] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from natural language supervision. In: Proc. of International