Patent Image Retrieval **Using Cross-entropy-based Metric Learning**

Yuma Honbu

The University of Electro-Communications, Tokyo, Japan

P+

(N-)

Introduction

Backgrounds

P1-6

- 1. Patents have a long challenge for image retrieval
 - Described as black-and-white drawings
- 2. De facto method or system has yet to emerge
- Drawings are the focus of infringement judgments 3.
- Yet to be a successful application in the past

Methods in our work

Keiji Yanai

P+

USD799800S

Kotaro Higuchi

Contributions

Achieve SOTA score with metric learning

USD811075S1

- Introduce InfoNCE and ArcFace
- Implement a patent image retrieval application

Related work

Conventional Patent Searches

Search tools are keyword-based

<u>Related work on patent image retrieval</u>

- Feature descriptor[1] ullet
 - Rotation invariant local binary patterns(RI-LBP)
- Dual VGG Net for patent image retrieval[2]
 - Trained as a classification task
- DeepPatent[3]
 - ResNet with training Triplet network

InfoNCE[5]

InfoNCE uses many Anchor-Negative Pairs $e^{q \cdot k_+ / \tau}$ $L_i = -\log \frac{1}{e^{q \cdot k_+ / \tau}}$

ArcFace[6]

Add margin *m* for the correct class to the Cross-Entropy $e^{s\cos(\theta_{y_i}+m)}$

$$L_a = -\log \frac{1}{e^{s\cos(\theta_{y_i} + m)}} + \sum_{j=1, j \neq y_i}^N e^{s\cos(\theta_{y_i} + m)} + \sum_{j=1, j \neq y_i}^N e^{s\cos(\theta_{y_i} + m)}$$

Experimental results

mAP score comparison	
Method	mAP
RI-LBP [3]	0.069
ResNet + Triplet [3]	0.379
EffNet + Triplet	0.384
EffNet + InfoNCE (ours)	0.447
EffNet + ArcFace (ours)	0.662

Dataset: DeepPatent[3]

Public dataset of the U.S. design patent • The dataset size is 338k patent drawings

(N-)

(N-

infoNCE pair

Evaluation Index

mAP score: average precisions from each test query of the dataset

Implementation using FAISS[7]

Yang, L., Gong, M., and Asari, V.: Diagram Image Retrieval and Analysis: Challenges and Opportunities. In: CVPR Workshops. pp.685-698 (2020) Jiang, S., Luo, J., Pava, G., Hu, J., and Magee, C.: A Convolutional Neural Network-based Patent Image Retrieval Method for Design Ideation. In: IDETC-CIE. ASME (2020) 1 2 3 Kucer, M., Oyen, D., Castorena, J., and Wu, J.: DeepPatent: Large Scale Patent Drawing Recognition and Retrieval. In: WACV. pp. 2309-2318 (2022) Hoffer, E., and Ailon, N.: Deep Metric Learning Using Triplet Network. In: Similarity-Based Pattern Recognition. pp. 84-92. Springer International Publishing (2015) Oord, A., Li, Y., and Vinyals, O.: Representation Learning with Contrastive Predictive Coding. arXiv preprint arXiv: 1807.03748 (2018) Deng, J., Guo, J., Xue, N., and Zafeiriou, S.: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In: CVPR. pp. 4685-4694 (2019) 6 Facebook AI Similarity Search Library(FAISS): https://ai.facebook.com/tools/faiss/