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Abstract

Human-object interaction (HOI) detection as a
downstream of object detection task requires localizing
pairs of humans and objects and recognizing the in-
teraction between them. Recent one-stage approaches
focus on detecting possible interaction points or filter-
ing human-object pairs, ignoring the variability in the
location and size of different objects at spatial scales.
In this paper, we propose a transformer-based method,
QAHOI (Query-Based Anchors for Human-Object In-
teraction detection), which leverages a multi-scale ar-
chitecture to extract features from different spatial
scales and uses query-based anchors to predict all the
elements of an HOI instance. We further investigate
that a powerful backbone significantly increases accu-
racy for QAHOI, and QAHOI with a transformer-based
backbone outperforms recent state-of-the-art methods
by large margins on the HICO-DET benchmark.

1 Introduction

Human-object interaction (HOI) detection has re-
cently received increasing attention as a field with great
potential applications. HOI detection approaches need
to extract the semantic relationships between humans
and objects and predict a set of ⟨human, object, action⟩
triplets within an image. Specifically, an HOI instance
is a pair of human and object bounding boxes, and
a corresponding action class represents the relation-
ship between them. HOI detection can be divided into
two parts: human-object pair detection and interaction
recognition.

To achieve high efficiency, one-stage approaches
[5, 9, 7, 19, 3, 14, 17, 6, 15] detect human-object pairs
and recognize the corresponding action class in parallel.
A commonly adopted way is to make use of the inter-
action point, which is between the human and object
boxes [9, 17, 15], and a matching process is required to
match the interaction point with a pair of human and
object boxes. Although interaction points combine the
HOI instance detection and recognition together, there
are mainly two drawbacks such as the semantic features
are ambiguous when the interaction point is far apart
from the human and object, and the lack of a multi-
scale architecture which is commonly used in object
detection.

To extract the semantic features between the
human-object pairs with more contextual information
and less irrelevant local information, Transformer [16]
is introduced into HOI detection [7, 19, 3, 14]. As
query embeddings in the transformer decoder represent
HOI instances and incorporate object detection and in-
teraction recognition together, the transformer-based
HOI detection methods also can be seen as query-based
methods which belong to the one-stage approach. How-
ever, the transformer-based methods [7, 19, 3, 14] are
built upon the CNN backbone, and the multi-head at-
tention used in transformer suffers from a quadratic
complexity with the growth of the feature map size.
Besides, the training of the high complexity trans-
former suffers from slow convergence, and pre-training
the model in object detection task and fine-tuning in
HOI detection task are always used to obtain a fine
result.

In this paper, we proposed a transformer-based
method, which leverages a hierarchical backbone to
extract multi-scale context features, and a deformable
transformer [18] to encode the multi-scale semantic fea-
tures and decode the HOI instances. The reference
points in the deformable transformer decoder act as the
anchors for aggregating the HOI embeddings from the
multi-scale context features. With the base loacation
of anchors and corresponding HOI embeddings, an in-
teraction detection head can predict the HOI instances
directly. As the anchors are used throughout the HOI
embeddings’ decoding and the final prediction process,
we call our method Query-Based Anchors for HOI de-
tection, QAHOI. Furthermore, with the efficient atten-
tion mechanism of the deformable transformer, QA-
HOI with a large transformer-based backbone can be
trained from scratch and outperform recent state-of-
the-art methods by large margins.

2 Method

Our purpose is to address the drawbacks in the re-
cent one-stage approaches that lack a multi-scale ar-
chitecture and suffers from a poor CNN backbone for
the HOI detection task. The deformable DETR [18]
develops the deformable multi-scale attention module
to reduce the complexity of attention in DETR to the
linear complexity with the spatial size, which achieves
a multi-scale transformer-based object detector. Our
proposed method, QAHOI, further improves this idea



Figure 1. The overall architecture of QAHOI.

Figure 3. The interaction head
predicts the HOI instances
based on the anchors.

Figure 2. The decoding process of the deformable
transformer decoder.

to solve HOI detection as a dense prediction problem.
QAHOI adapts the deformable transformer decoder to
an HOI instance detector by using the query embed-
dings to generate anchors and decode the HOI infor-
mation. The overall architecture of QAHOI is shown
in Figure 1.

2.1 Multi-Scale Feature Extractor

To improve the model’s expression ability, QAHOI
constructs a multi-scale feature extractor by combin-
ing a hierarchical backbone and a deformable trans-
former encoder [18] as shown in Figure 1. The hierar-
chical backbone extracts four stages’ feature maps for
the deformable transformer encoder, which is well de-
signed for processing multi-scale feature maps. Specif-
ically, given an image of size 3×H ×W , QAHOI uses

the last three stages’ feature maps x1 ∈ R2Cs×H
8 ×W

8 ,

x2 ∈ R4Cs× H
16×

W
16 and x3 ∈ R8Cs× H

32×
W
32 of the back-

bone. The 1 × 1 convolution is used to project the
feature map x1, x2 and x3 from dimension Cs to di-
mension Cd. Then, the multi-scale feature maps x1,
x2 and x3 are flattened and concatenated to NS vec-
tors with Cd dimensions as the input of the deformable
transformer encoder, whereNS is the sum of pixel num-
bers of the three feature maps from the backbone. A
fixed positional encoding is used to indicate the scale

level of the input. The deformable transformer encoder
extracts the semantic feature S ∈ RNS×Cd in a multi-
scale manner and provides it for the deformable trans-
form decoder to decode the HOI instances.

2.2 Predicting HOI with Query-Based Anchors

According to the deformable DETR, the query em-
beddings of the deformable transformer decoder in QA-
HOI are split equally into two parts, one as the HOI
query embeddings QHOI ∈ RNq×Cd and the other as
the positional embeddings QPos ∈ RNq×Cd , and the
anchors P ∈ RNq×2 are generated from positional
embeddings QPos via a linear layer. With the HOI
query embeddings and the anchors, the HOI embed-
dings E ∈ RNq×Cd are decoded by the deformable
transformer decoder’s attention mechanism with the
source of the encoded semantic feature from the de-
formable transformer encoder. The decoding process
of the deformable transformer decoder is shown in Fig-
ure 2. The self-attention of the HOI query embeddings
are calculated by the multi-head attention module [16]
with the positional embeddings, and the anchors ag-
gregate the semantic feature from the output of the de-
formable transform encoder to calculate the multi-scale
deformable attention [18] with the HOI query embed-
dings. Besides, after the calculation of the multi-scale
deformable attention, a feed-forward network (FFN)
composed of linear layers is used to process the output
embeddings. The self-attention and the multi-scale at-
tention are calculated in the stacked decode layer for
NL times, and the last layer outputs the HOI embed-
dings for the interaction detection head to predict the
HOI instances.

QAHOI implements a simple interaction head which
is similar to the QPIC [14], and the difference is that
QAHOI combines each HOI embedding with a certain
anchor. Hence, QAHOI feeds the decoded HOI em-
beddings into the interaction head to predict the HOI
instances based on the anchors. Figure 3 shows the
predicting process of the interaction head in QAHOI.
Following the deformable DETR, each anchor (px, py)
of the anchor set P ∈ RNq×2 acts as the base point for



the bounding boxes of a pair of a human and an object.
Thus, the human and object boxes Bh, Bo ∈ RNq×4

predicted by the FFN in the interaction head are com-
posed of {dx, dy, w, h}, where dx and dy denote the
offsets between the anchor and the box’s center, and w
and h denote the box’s width and height. Then, the
final bounding boxes B̂h, B̂o are composed of {dx+px,
dy + py, w, h}. Finally, the object class of the object
boxes O ∈ RNq×Ko and the action class of the HOI
instances A ∈ RNq×Ka are combined with the human
and object bounding boxes B̂h, B̂o to construct the
output HOI instances.

2.3 Training and Inference

Following the training procedure of the QPIC [14],
the ground-truth set is padded with ϕ (no pairs) to the
size of Nq, and the Hungarian algorithm [8] is used to
match all of the Nq predictions with the ground-truth
set. For the loss calculated on the matched pairs, the
QPIC’s loss function is based on the DETR [1], and be-
cause QAHOI implements the deformable DETR [18],
we follow the Deformable DETR to calculate the Fo-
cal Loss [10] of the object class, which is different from
the QPIC. For the anchors derived from the query em-
beddings, because the query embeddings are learnable
parameters, the positions of the anchors are learned
during training and fixed during inference.

2.4 Top K Scores and HOI NMS

QAHOI requires sufficient anchors to extract multi-
scale features. In general, the number of anchors far
exceeds the number of HOI instances in an image. For
the HICO-DET dataset, 96% of the images contains
less than 10 HOI instances. QAHOI filters the results
in two steps. Firstly, the HOI instances with the top
Nt object class scores are selected. Then, an HOI Non-
Maximal Suppression (NMS) is used to filter out the
final results. The HOI NMS is calculated based on the
IoU of humans and objects between HOI instances and
the HOI score. The HOI score is obtained by multiply-
ing the object score and the action score, cHOI = co ·ca.
And a combined IoU of human and object between an
HOI instance i and j is calculated as:

IoU(i, j) = IoU(B
(h)
i , B

(h)
j ) · IoU(B

(o)
j , B

(o)
j ) (1)

The same as the object detection task, a threshold δ is
used to remove HOI instances with low scores for each
action category based on the IoU.

3 Experiments

3.1 Experimental Setting

Dataset. We conduct the experiments on the HICO-
DET [2] dataset, which contains 47,776 images (38,118

in the training set and 9,658 in the test set). HICO-
DET has 117 action classes and 80 object classes (the
object classes same as the MS-COCO [11] dataset),
and the action classes and the object classes consti-
tute 600 HOI classes. Based on the number of in-
stances of the 600 HOI classes in the dataset, these
HOI classes are divided into three categories: Full (all
of the HOI classes), Rare (138 classes with less than 10
instances), and Non-Rare (462 classes with 10 or more
than 10 instances). We report the results (in Table 1)
on the Default setting (with unknown objects) and the
Known Object setting (without unknown objects) of
the HICO-DET.
Metric. The mean average precision (mAP) is used to
evaluate the predicted HOI instances. For a true pos-
itive HOI instance, the intersection over union (IoU)
between the predicted human bounding box and the
ground-truth human bounding box is higher than 0.5,
and the IoU between the predicted object and the
ground-truth object bounding box is also higher than
0.5. As usual, we report the mAP on the Full, Rare,
and Non-Rare categories of the HICO-DET.
Implementation Details. For the backbone, we
train QAHOI with Swin-Transformer [12] pre-trained
on ImageNet [4] as our best model. Specifically, we use
Swin-Tiny and Swin-Base pre-trained on ImageNet-
1K, and Swin-Base and Swin-Large pre-trained on
ImageNet-22K. Following the setting of the Deformable
DETR, the deformable transformer encoder and de-
coder both have 6 layers (NL = 6), the number of the
query embeddings is Nq = 300, and top Nt = 100 HOI
instances are selected by object scores. In the NMS
process, δ = 0.5 is used to filter the HOI instances
by the combined IoU. We use the AdamW [13] opti-
mizer with the backbone’s learning rate of 10−5 and
other’s 10−4, and the weight decay of 10−4. We train
the model for 150 epochs with a batch size of 16 (two
images per GPU, 8 GPUs), and the learning rates of
the backbone and others are decayed at 120 epochs.

3.2 Comparison with State-of-the-Arts

The results compared with the state-of-the-art
methods on the HICO-DET are shown in Table 1. We
use QAHOI with the Swin Transformer as our best
model to compare with other state-of-the-art methods.
Compared with recent one-stage approaches, with the
multi-scale feature maps and multi-scale deformable at-
tention, even we do not train a detector on the MS-
COCO dataset, which is beneficial for the object de-
tection part of the model, QAHOI with Swin-Large
backbone still outperforms the state-of-the-art one-
stage method, QPIC with 5.88 mAP (relatively 19.7%).
We found that the better the performance of the pre-
trained backbone in the classification task became,
the further improvement in accuracy we achieved in
the HOI detection. The mAP of QAHOI with Swin-
Base backbone pre-trained on ImageNet-20K is 4.1 (rel-



Fine-tuned Default Known Object
Method Backbone Detection Full Rare Non-Rare Full Rare Non-Rare

IP-Net [15] ResNet-50-FPN 7 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [9] Hourglass-104 3 21.73 13.78 24.10 24.58 16.65 26.84
GGNet [17] Hourglass-104 3 23.47 16.48 25.60 27.36 20.23 29.48
HOITrans [19] ResNet-101 3 26.61 19.15 28.84 29.13 20.98 31.57
HOTR [7] ResNet-50 7 23.46 16.21 25.65 - - -
HOTR [7] ResNet-50 3 25.10 17.34 27.42 - - -
AS-Net [3] ResNet-50 7 24.40 22.39 25.01 27.41 25.44 28.00
AS-Net [3] ResNet-50 3 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [14] ResNet-101 3 29.90 23.92 31.69 32.38 26.06 34.27
QAHOI Swin-Tiny 7 28.47 22.44 30.27 30.99 24.83 32.84
QAHOI Swin-Base 7 29.47 22.24 31.63 31.45 24.00 33.68
QAHOI Swin-Base∗ 7 31.83 26.27 33.49 33.53 27.72 35.26
QAHOI Swin-Base∗+ 7 33.58 25.86 35.88 35.34 27.24 37.76
QAHOI Swin-Large∗+ 7 35.78 29.80 37.56 37.59 31.66 39.36

Table 1. Comparison with state-of-the-art on HICO-DET.
Using fine-tuned detection means initializing the weights
of the detection part from a model pre-trained on the MS-
COCO dataset and fine-tuning the whole model on the
HICO-DET dataset. The Swin-Base and Swin-Large back-
bone with the ∗ and + are pre-trained on ImageNet-22K
with 384 × 384 input resolution.

Fine-tuned Default
Arch. # Backbone Detection Multi-scale Full Rare Non-Rare

QPIC
(1) ResNet-50 7 x3 24.21 17.51 26.21
(2) ResNet-50 3 x3 29.07 21.85 31.23
(3) Swin-Tiny 7 x3 27.19 21.32 28.95

QAHOI

(4) ResNet-50 7 x1, x2, x3, x4 24.35 16.18 26.80
(5) ResNet-50 3 x1, x2, x3, x4 26.18 18.06 28.61
(6) Swin-Tiny 7 x1, x2, x3, x4 28.09 21.65 30.01
(7) Swin-Tiny 7 x1, x2, x3 28.47 22.44 30.27
(8) Swin-Tiny 7 x2, x3 28.12 20.43 30.41
(9) Swin-Tiny 7 x3 26.65 19.13 28.89

Table 2. Evaluations of the training strate-
gies and the effect of multi-scale feature
maps and transformer-based backbone.

Default
method Full Rare Non-Rare

base 26.64 20.62 28.44
+ topk scores 26.70 20.89 28.43

+ NMS 28.47 22.44 30.27

Table 3. Ablation study of the filtering
steps. QAHOI with Swin-Tiny is used as
the base method.

atively 13.9%) higher than the same backbone pre-
trained on ImageNet-1K.

3.3 Ablation Study

We conduct ablation studies using CNN-based and
Transformer-based backbones. For the CNN-based
backbone, we use ResNet-50 and investigate the perfor-
mance of two training strategies, starting from scratch
and fine-tuning the weights of the detector.
Training strategies. The same as QPIC, we use the
deformable DETR’s weight which is trained on the MS-
COCO dataset, to initialize QAHOI and then fine-tune
QAHOI on the HICO-DET dataset. Following the de-
formable DETR’s implementation, An additional low-

resolution feature map x4 ∈ RCd× H
64×

W
64 is generated

by using a 3 × 3 convolution on the feature map x3.
We also train QAHOI and QPIC with ResNet-50 and
Swin-Tiny from scratch, respectively. From the results
in Table 2, without training a detector, (4) QAHOI
with ResNet-50 or (7) Swin-Tiny achieves better re-
sults on the Full and Non-Rare categories compared
with (1) QPIC with ResNet-50 or (3) Swin-Tiny.
Multi-scale feature maps. We use the Swin-Tiny
backbone to investigate the effect of different combina-
tions of feature maps on the accuracy of the proposed
method. From the results in Table 2(6), the additional
feature map does not improve the accuracy. For meth-
ods (7)(8)(9) of QAHOI, the accuracy decreases with
the removal of multi-scale feature maps. Comparing
(9) to (7), using the feature maps of three stages gives
a model accuracy improvement of 1.82 mAP (relatively
6.8%) on the Full category.
CNN-based backbone vs Transformer-based
backbone. The Swin-Tiny has the model size and
the computation complexity similar to ResNet-50, but
the accuracy on ImageNet is higher than ResNet-50.
Without training an object detector, compared with
the model trained with ResNet-50 in Table 2(1)(4),

the transformer-based backbone Swin-Tiny improves
the accuracy of both (3) QPIC (2.98 mAP, relatively
12.3%) and (7) QAHOI (4.12 mAP, relatively 16.9%),
and (7) QAHOI with Swin-Tiny is better than (3)
QPIC with Swin-Tiny both of the accuracy and im-
provement, which means our method has a great po-
tential based on well-designed backbones. The results
of QAHOI trained with Swin-Base and Swin-Large in
Table 1 also show that using a backbone with higher ac-
curacy on classification tasks can improve the accuracy
of HOI detection significantly. The result of (5) QA-
HOI fine-tuned from Deformable DETR is lower than
(2) QPIC fine-tuned from DETR. One of the reasons
is that QPIC uses the DETR with 500 epochs of train-
ing, while we use the deformable DETR with only 50
epochs of training. QAHOI would have achieved bet-
ter results if we have fine-tuned the deformable DETR
with more epochs.
Top K scores and HOI NMS. The filtering process
is important to QAHOI, in Table 3, the top K scores
step and NMS step improve the accuracy on the Full
category by 1.83 mAP.

4 Conclusion and Future Work

In this paper, we propose a transformer-based one-
stage method for HOI detection, which leverages a hier-
archical backbone and transformer encoder to extract
the multi-scale semantic feature, a transformer decoder
to decode the HOI embeddings and an interaction head
to predict the HOI instances. The transformer decoder
and the interaction head leverage the query-based an-
chors to decode the HOI embeddings and predict the
HOI instances. Transformer-based backbones with the
attention mechanism show a great advance for HOI de-
tection, and the query-based anchors are also flexible
in detecting the HOI instances. In the future, we will
develop our method with better object detectors and
further reduce the training cost.
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