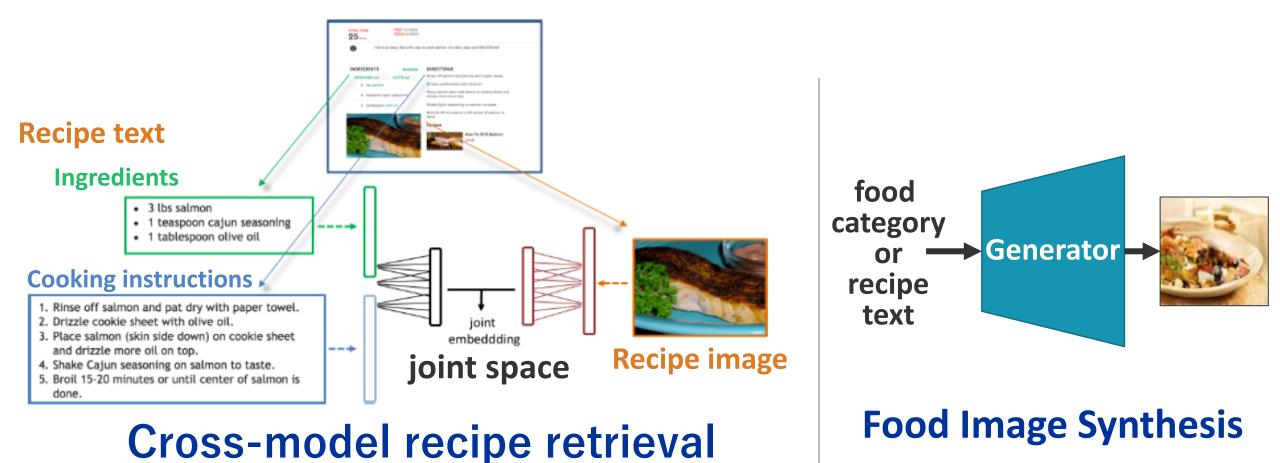


Mask-based Food Image Synthesis with Cross-Modal Recipe Embeddings

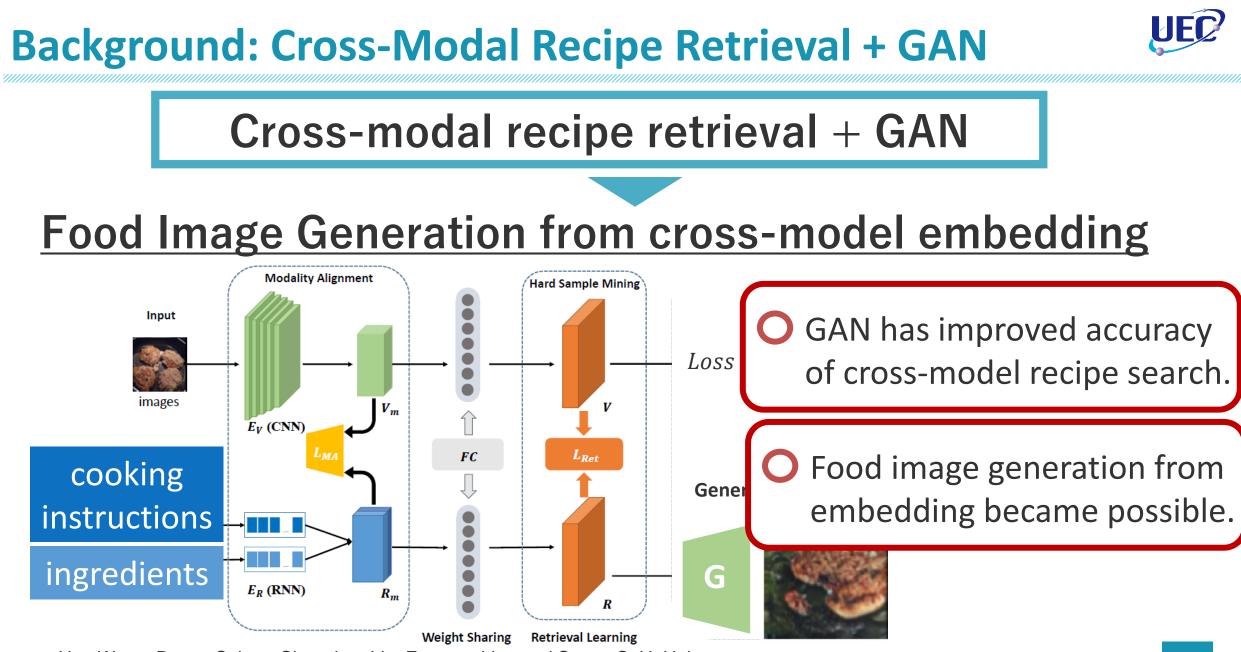
Zhongtao Chen, Yuma Honbu, Keiji Yanai The University of Electro-Communications, Tokyo (UEC)

Background

 Cross-model recipe retrieval and food photo synthesis have drawn much attention in the food multimedia research community.

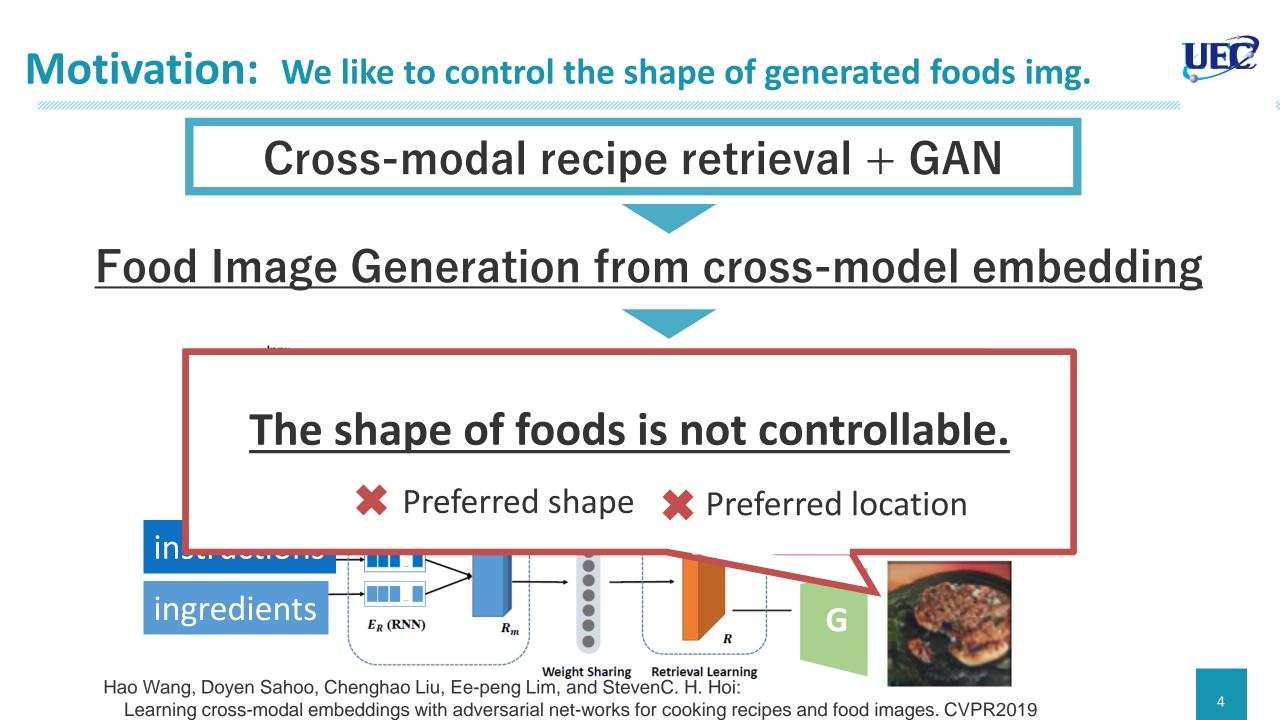


Cited from "Learning Cross-modal Embeddings for Cooking Recipes and Food Images"

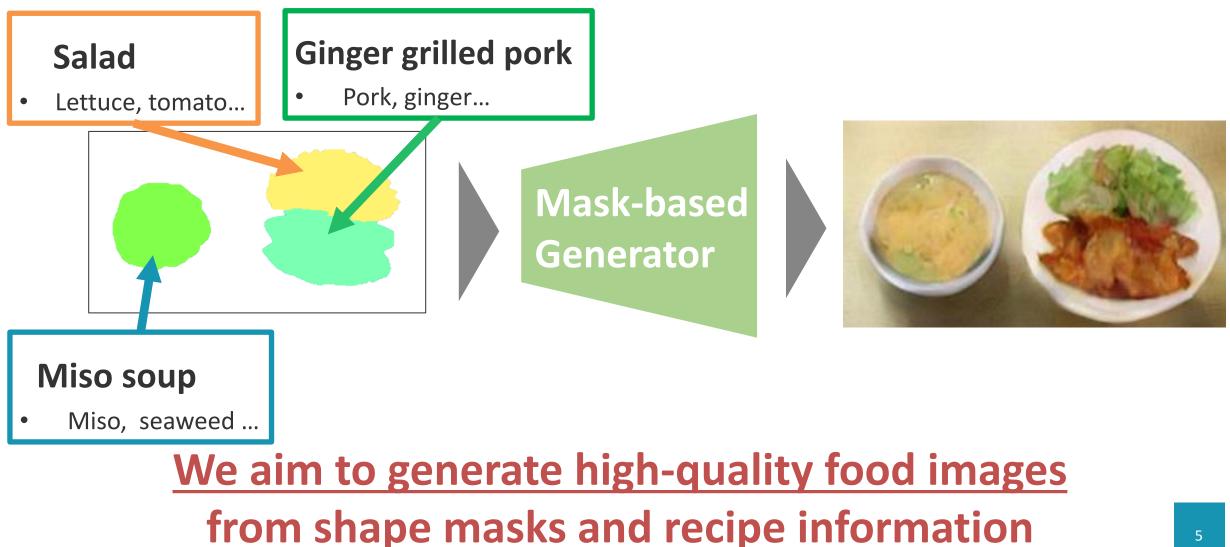


Hao Wang, Doyen Sahoo, Chenghao Liu, Ee-peng Lim, and StevenC. H. Hoi:

Learning cross-modal embeddings with adversarial net-works for cooking recipes and food images. CVPR2019



Objective: mask-based food image synthesis



YEC.

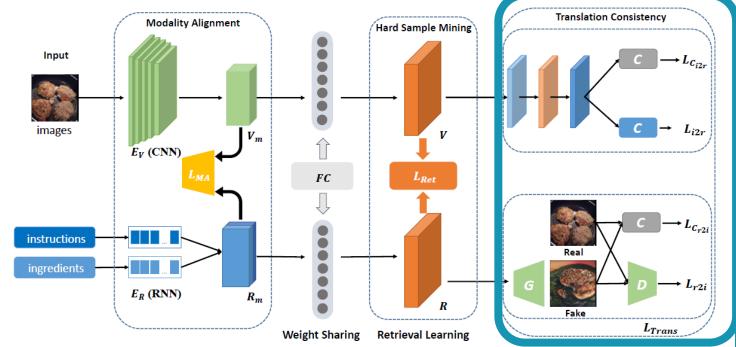
Related work (1) : Adversarial Cross-Modal Embedding (ACME)

ACME [Hao, CVPR2019]

- Is the first work which added a food image generator (GAN) to cross-model recipe search model.
 - O improvement of recipe search performance & food image generation from cross-modal recipe embeddings
 - ✗ low-quality images

Generated Images

Generated Images



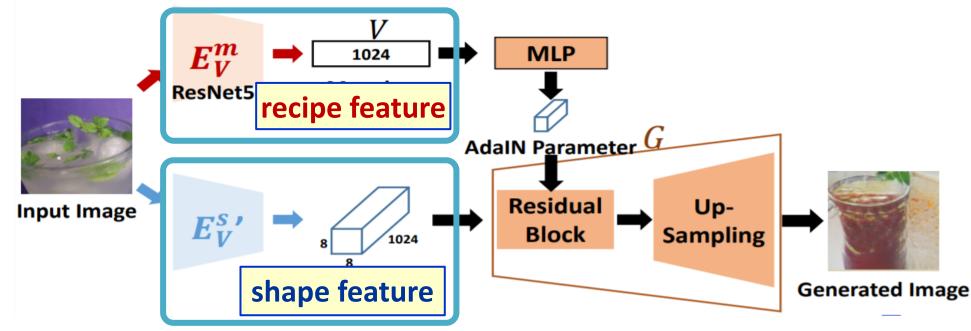
Hao Wang et.al : Learning Cross-Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images, CVPR 2019

Related work 2: RDE-GAN (Our previous work)

RDE-GAN [Sugiyama and Yanai, ACM Multimedia2021] Recipe Disentangling Embedding GAN (RDE-GAN) disentangles recipe information from shape information of recipe images.

O high performance on cross-modal recipe retrieval and high-quality image generation

x instability of training process, and imperfect disentanglement on shape information

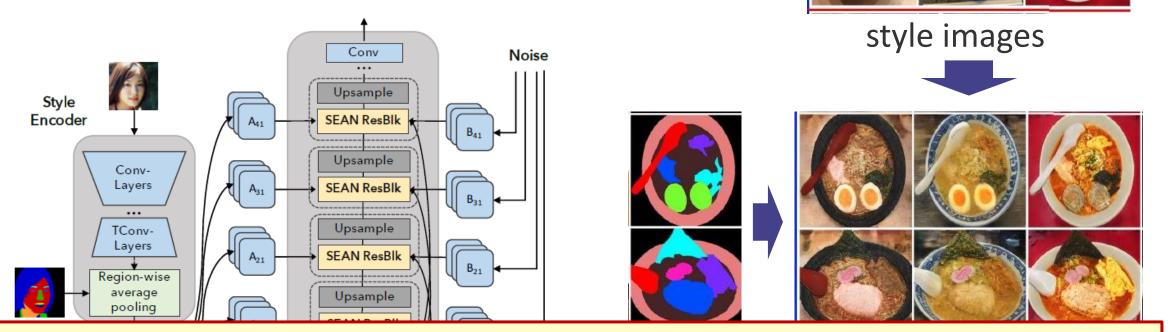


Y. Sugiyama and K. Yanai: Cross-Modal Recipe Embeddings by Disentangling Recipe Contents and Dish Styles, ACM Multimedia 2021

Related work ③: Mask-based image synthesis GAN

SEAN (Semantic region-Adaptive Normalization) [CVPR 2020]

• SEAN can control styles on each semantic mask independently e.g. We can transfer the ramen style to semantic mask images.



We introduce mask-based GAN into cross-modal food image synthesis.

ST

<u>í</u>

masks

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization, CVPR 2020.

Proposed method: Overview

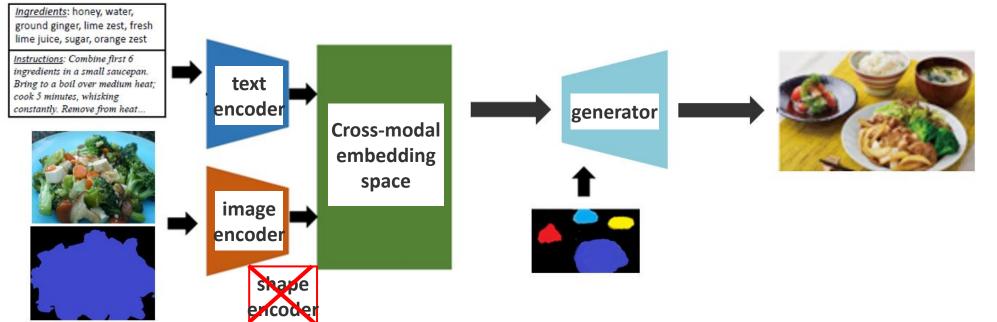
MRE-GAN (Mask-based Recipe Embedding GAN)

[generation time]

Given region masks and recipe embeddings, we can generate multiple-dish food images. [training time]

By providing masks for training images, a shape encoder is removed,

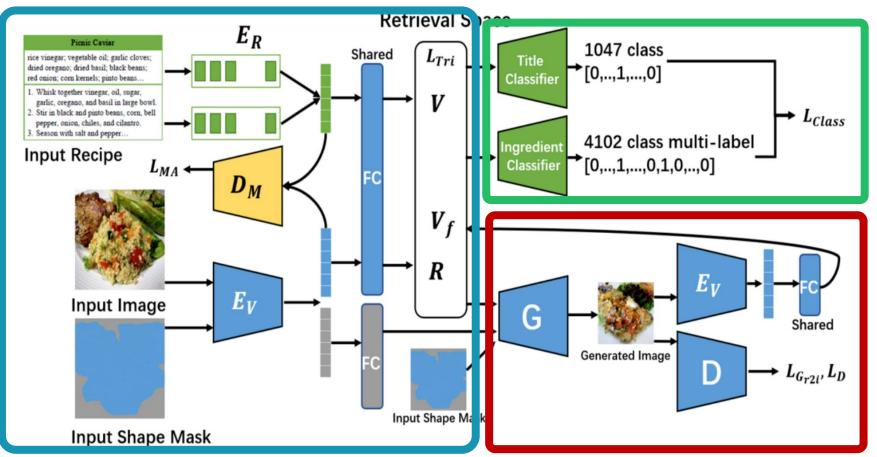
which makes training easier than RDE-GAN having both image and shape encoders.



Proposed method : architecture

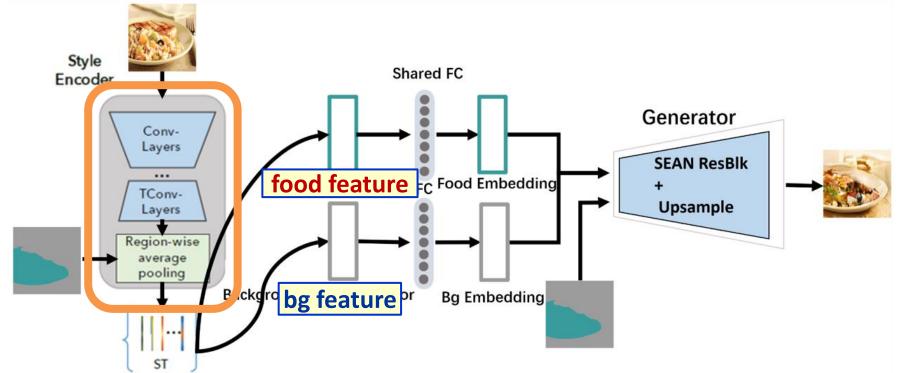
MRE-GAN (Mask-based Recipe Embedding GAN) consists three parts:

- Mask-based GAN + Cross model recipe embedding + recipe title/ingredient estimation
- Based on RDE-GAN, we added SEAN and removed a shape encoder to control food shapes.



${\sf Improvement}\ (1) : {\sf Mask-based\ image\ encoder\ with\ masked\ average\ pooling}$

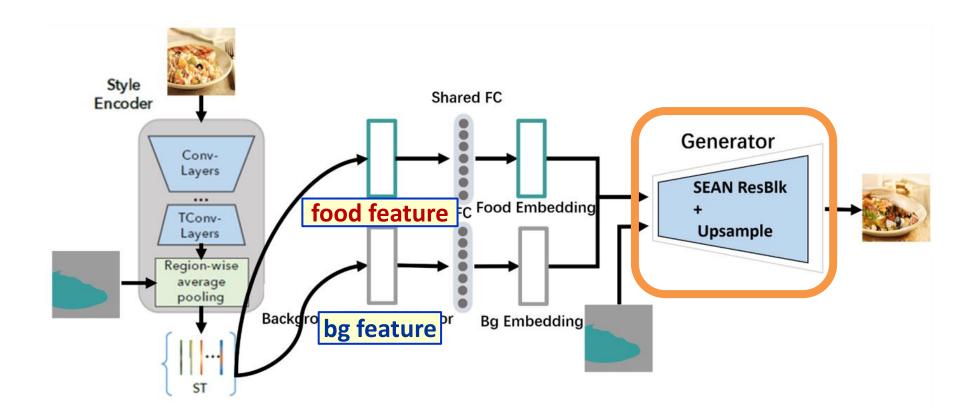
- Extract foreground food region features and background features separately from an input food image based on the corresponding food region mask
 - Use only food region features for training of cross-modal embeddings
 - Use triplet loss and cross-modal adversarial loss for training of cross-model embeddings



Proposed method: Improvement (2) from RDE-GAN

Improvement 2 : Masked-based image generator based on SEAN

- Introduce a SEAN-based generator to control a style of each of the mask regions.
- Use adversarial loss, feature matching loss and Perceptual loss for training of a generator



1) Adversarial training between text and image emb.

 $L_{MA} = E_{i \sim p_{image}} \left[\log(D_M(E_V(i))) \right] + E_{r \sim p_{recipe}} \left[\log(1 - D_M(E_R(r))) \right]$

Modality Alignment Loss

2) Distance learning between texts and images

 $L_{Tri} = \sum_{V} [d(V_a, R_p) - d(V_a, R_n) + \alpha]_+ + \sum_{R} [d(R_a, V_p) - d(R_a, V_n) + \alpha]_+$ **Triplet Loss**

3) Training image generator (GAN)

) Training image generator (GAN)
Adversarial, Feature matching, Perceptual Loss
$$L_{G_{r2i}} = \min_{E,G} \left((\max_{D1,D2} \sum_{k=1,2} L_{GAN}) + \gamma_1 \sum_{k=1,2} L_{FM} + \gamma_2 L_{percept} \right)$$

4) Estimation of recipe title and ingredient from embeddings

Class Loss

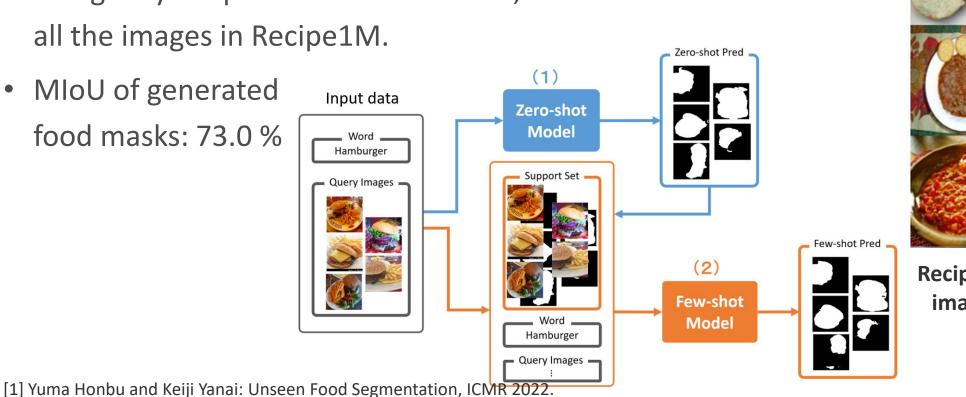
$$L_{Class} = L_{Title}(V, L_t) + L_{Title}(R, L_t) + L_{Ingr}(V, L_i) + L_{Ingr}(R, L_i)$$

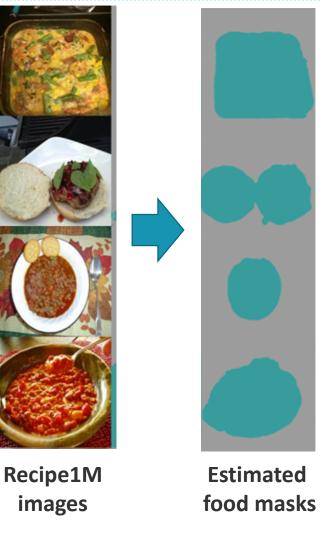
$$L_{Total} = \lambda_1 L_{Tri} + \lambda_2 L_{MA} + \lambda_3 L_{G_{r2i}} + \lambda_4 L_{Class}$$
$$(\lambda_1 = 1.0, \lambda_2 = 0.005, \lambda_3 = 0.002, \lambda_4 = 0.002$$

Preparing food masks for all the images of the Recipe1M dataset

To do that, we used "Unseen Food Segmentation[1]".

- We adapted a Zero/Few-shot segmentation method, PFENet[TPAMI 2021], for food domain.
- Using only recipe textual information, we created food masks for all the images in Recipe1M.
- MIoU of generated food masks: 73.0 %

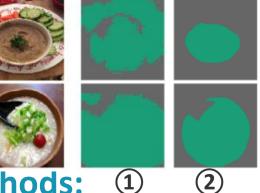




- Quantitative/qualitative experiments for MRE-GAN
- Baselines
 - Cross-modal GAN models: ACME [CVPR2019], RDE-GAN [ACMMM2021],
 X-MRS[ACMMM2021] Food GAN models: CookGAN [CVPR2020]
- Training data

Recipe1M: We used 340,000 pairs of recipe texts and images.

(training: 238,999 val: 51,119 test: 51,303)



Food shape masks automatically generated by two methods: ①

1 DeepLabV3+ trained with food segmentation dataset, UECFoodPix Complete. 2 "Unseen Food Segmentation" methods which is based on the combination of

Zero-shot + Few-shot Segmentation ① mIoU: 54.1% ② mIoU: 73.0%

[1] Hao Wang et al. : Learning Cross-Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images. CVPR 2019.
[2] Yu Sugiyama and Keiji Yanai. Cross-Modal Recipe Embeddings by Disentangling Recipe Contents and Dish Styles. ACMMM2021
[3] Amaia Salvador, et al.: Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. CVPR2017.

Evaluation of the quality with FID and IS.

• Compared with four baselines.

(The smaller FID and the bigger IS means the higher quality.)

Table 1: Comparison of image quality by the FID score (\downarrow) and the IS score (\uparrow).

Method	Text2Img(FID↓)	Img2Img(FID↓)	Img2Img(IS↑)
ACME[17]	390.52	391.29	2.19±.09
RDE-GAN[15]	83.82	84.31	$6.99 \pm .07$
CookGAN[19]	_	_	$5.41 \pm .11$
X-MRS[7]	28.60	27.90	_
Ours (Mask _{DeepLabV3+})	56.72	56.11	—
Ours (Mask _{unseen})	27.44	27.12	8.27±.05

MRE-GAN outperformed the baseline and MRE-GAN w/ low-quality masks.

Experiments (2): qualitative evaluation

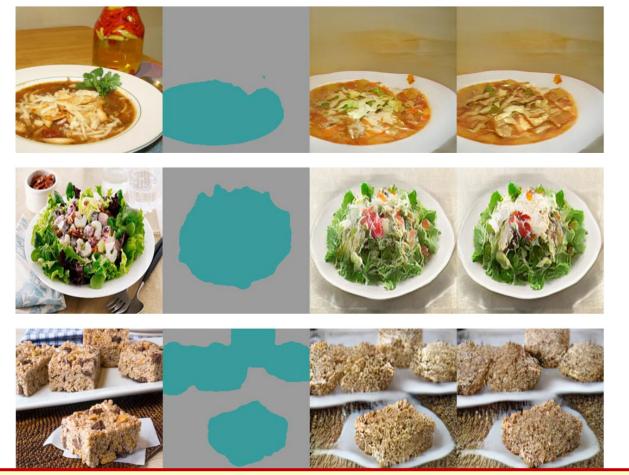
Comparison on reconstruction ability (auto-encoder task)

Original ACME RDE-GAN MRE-GAN

MRE-GAN can synthesis images with the same style and shape as original.

Experiments (2): qualitative evaluation

Reconstruction from textual emb. (text2img) and image emb. (img2img)



The image generated from both text and image emb. are almost identical.

Experiments (3) : multiple-dish images

Generating multiple-dish food images is possible.

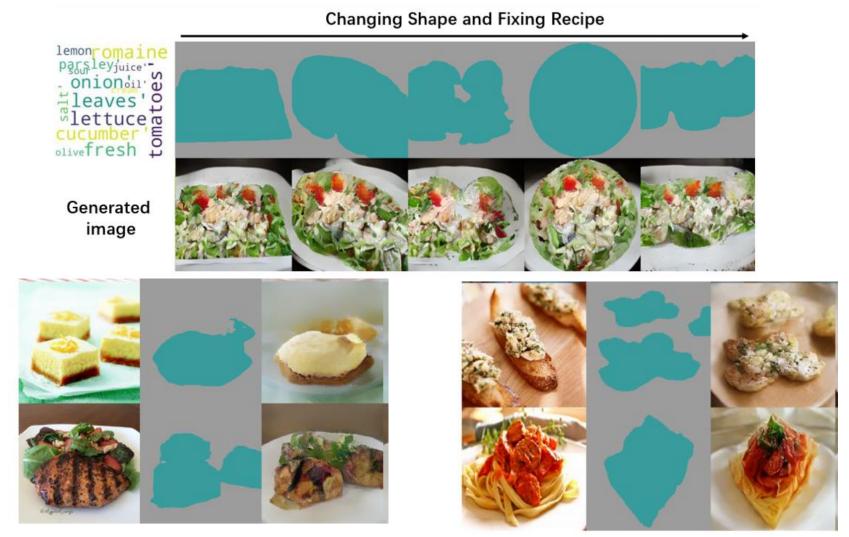
Style 1

Style 2

input mask

Experiment (4): Modification of generated images

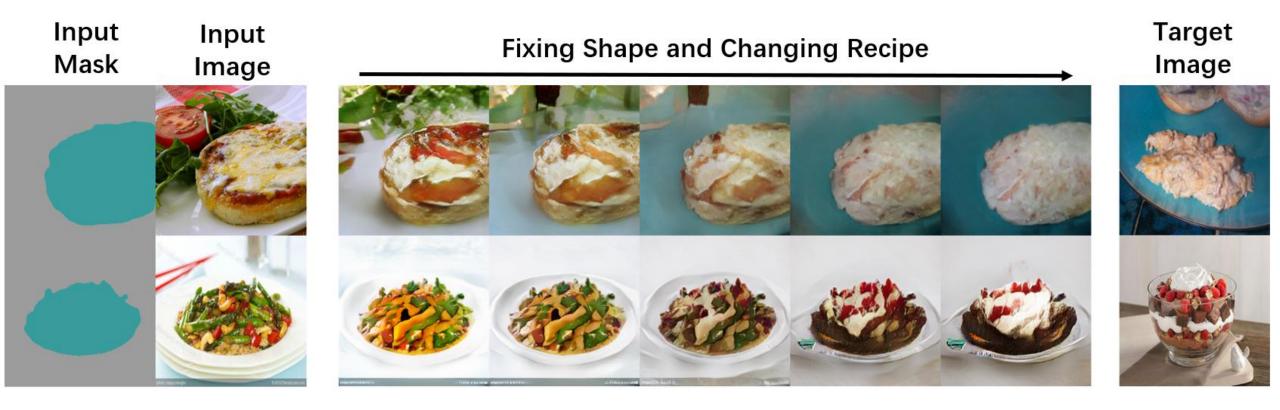
A) Changing shape masks with fixed recipe embeddings



Experiment (4): Modification of generated images

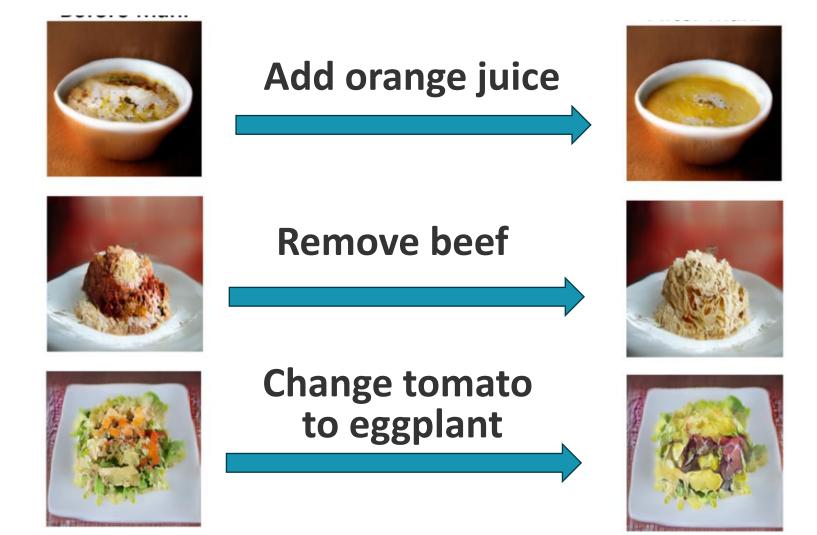
B) Changing recipe embeddings gradually with fixed shape masks

(interpolating recipe embeddings between two recipe)



Experiment (4): Modification of generated images

C) Changing a part of the ingredient texts with fixed masks



Conclusions

- We proposed a Mask-based Recipe Embedding GAN (MRE-GAN) which generates food images from cross-modal recipe embeddings based on region mask images.
- We added food region masks to all the images in Recipe1M.
- We confirmed the effectiveness of MRE-GAN by the experiments.
 We successfully generated multiple-dish food images and arbitrary shape food images.
- Future works

- Currently, the shape of dish plates is not controllable. We like to add plate mask annotation to our food region mask dataset of Recipe1M.
- We are working on Diffusion Model based food image generation with cross-model recipe embedding.

SetMealAsYouLike, ACM MM WS on MADiMa 2022.

- We added plate region masks to UEC-FoodPix Complete (100-kind food segmentation dataset) by Few-shot Segmentation methods.
- We can generate set meal images from plate and food masks.

(not using cross-model embeddings)

Yuma Honbu and Keiji Yanai: SetMealAsYouLike: Sketch-based Set Meal Image Synthesis with Plate Annotations, ACM MM WS on MADiMA 2022.