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ABSTRACT
In this paper, we propose an effective cross-modal embedding fusing
decoder (Cross Decoder) for cross-modal recipe retrieval tasks. We
introduce our Cross Decoder into a recent GAN and transformer-
based method to improve the representation capability of the recipe
embeddings. By reconstructing images through GAN using em-
beddings learned by our Cross Decoder, we increase the reliability
of embeddings, as well as achieving high-quality image genera-
tion. In addition, with dynamic margins adopted in the retrieval
loss, the performance of the whole framework is further improved.
The experimental results show that our method outperforms the
state-of-the-art methods on the Recipe1M dataset.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; •
Computing methodologies→ Search methodologies.
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1 INTRODUCTION
In recent years, the development of the Internet has made vast
amounts of multimodal data available to people, and searching
for cross-modal data has become an important issue. One of the
typical tasks in cross-modal search is cross-modal recipe retrieval.
The purpose of this task is to search for the corresponding recipe
text for a given query image, or the corresponding recipe image
for a given query recipe text. The challenge is that it is difficult
to distinguish between similar recipe texts and meal images in
recipe data. Recipe1M [5] proposed by Salvador et al. is a widely
used dataset for cross-modal recipe retrieval. The recipe text has
three sections: title, ingredients, and cooking instructions. At the
same time, each recipe is accompanied by a recipe image. Recently,
TNLBT [10] leverages advanced vision transformer [4] to encode
recipe images, and trains the model with large batch size. With
these advancements, TNLBT achieves state-of-the-art performance
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on the Recipe1M dataset. In this paper, we adopt TNLBT as the
baselinemodel and further improve the performance. To summarize,
our contributions are three-fold:

• We propose a Cross Decoder to improve the representation
capability of the recipe embeddings by fusing the cross-
modal recipe embeddings.

• We introduce dynamic margins into distance learning of
TNLBT to adjust the learning difficulty.

• The results on the Recipe1M dataset show that our method
outperforms the state-of-the-art methods.

2 RELATEDWORK
From the beginning, a natural solution (Joint Embedding, JE) pro-
posed by Salvador et al. [5] is to encode features from two different
modalities into a joint embedding space while bringing the distribu-
tions of the encoded correspondences closer together to enable mu-
tual search. Wang et al. introduces an efficient adversarial learning
framework and proposed ACME [9], which achieves high retrieval
accuracy by introducing a triplet loss with hard sample mining.
Under the boom of Transformer [8] in natural language processing,
H-T [6] introduces hierarchical transformers to encode recipe texts
and a self-supervised learning strategy to explore complementary
information between recipe texts. With the attention mechanism of
Transformer, H-T outperforms ACME by a large margin. Then, T-
Food [7] introduces the MultiModal Regularization (MMR) module
on top of the H-T architecture to integrate the information between
modalities and a variant of triplet loss with dynamic margins is
proposed to adjust the learning difficulty of the model. To ensure
the consistency of text information, several previous studies [9, 10]
have generated images of text, but have ignored the relationship be-
tween images and text in the image generation process. The fusion
of multimodal features has been shown to improve the accuracy of
retrieval tasks [3]. ALBEF [3] has shown that using Cross Attention
between images and text in image-text retrieval can improve the
performance of both retrieval and pseudo text target generation.
Inspired by ALBEF, we introduce our Cross Decoder into TNLBT
to improve the representation capability of the recipe embeddings
by considering the relationship between images and texts.

3 METHOD
The overview of our proposed method is shown in Fig. 1. We first
introduce the recipe embedding encoding process in Sec. 3.1. Then,
we describe the image and text embedding learning process in
Sec. 3.2 and also introduce the implementation of our dynamic
margin triplet loss. Finally, we introduce our Cross Decoder in
Sec. 3.3.
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Figure 1: Overview of our proposed method. We build our method on top of TNLBT and introduce Cross Decoder to improve
the representation capability of the recipe embeddings. First, the text encoder and image encoder are used to encode the recipe
text and image, respectively. Then the encoded recipe and image embeddings 𝑹 and 𝑽 are aligned by adversarial learning and
distance learning. Our Cross Decoder is used to fuse the cross-modal recipe embeddings, and GAN is used to generate images
from the recipe embeddings.

3.1 Recipe Embedding Encoding
Following the architecture of TNLBT, as shown in Fig. 1 to learn
more reliable recipe embeddings, first, three elements in the recipe
text, title, ingredients, and instructions are encoded, respectively,
with hierarchical transformer encoders 𝐸𝑡𝑡𝑙 , 𝐸𝑖𝑛𝑔, 𝐸𝑖𝑛𝑠 proposed by
H-T [6], and obtain embeddings 𝒆𝑡𝑡𝑙 , 𝒆𝑖𝑛𝑔, 𝒆𝑖𝑛𝑠 for each of the title,
ingredients, and instructions. Then, these three embeddings are con-
catenated and encoded with the recipe text projection layer 𝐸𝑇 to
obtain the final recipe text embedding 𝑹. As nearly 70% of the sam-
ples in Recipe1M [5] only have text information, according to H-T, a
self-supervised loss function is used to explore the complementary
meaning between the title and the ingredients and instructions
in the recipe text. The self-supervised loss is used before encod-
ing the title, ingredient, and instruction embeddings 𝒆𝑡𝑡𝑙 , 𝒆𝑖𝑛𝑔, 𝒆𝑖𝑛𝑠
into a single embedding 𝑹. Specifically, a bi-directional triplet loss
function is adopted, which is defined as follows:
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(𝑖, 𝑗) =[𝑐 (𝒆 (𝑖 )𝑎 , 𝒆 ( 𝑗 )
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𝑏
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𝑏
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𝑏

, 𝒆 (𝑖 )𝑎 ) + 𝛼]+
(1)

where, 𝒆𝑎 , 𝒆𝑏 are different embedding sets, and the superscript
(𝑖) and ( 𝑗) represent the index of the embedding set, (𝒆 (𝑖 ) , 𝒆 (𝑖 ) )
indicates a positive pair, and (𝒆 (𝑖 ) , 𝒆 ( 𝑗 ) ) indicates a negative pair.
Also, 𝑐 (·) is the cosine similarity, [𝑧]+ = max(0, 𝑧), and the margin
𝛼 is set to 0.3. Following H-T [6], the equation (1) in a batch for any
two of the title, ingredients, and instructions can be calculated as:

𝐿𝑏𝑖 (𝑎 (𝑖 ) , 𝑏 (𝑖 ) ) =
1
𝐵

𝐵∑︁
𝑗=0

𝐿
′

𝑏𝑖
(𝑖, 𝑗)𝛿 (𝑖, 𝑗), (2)

𝛿 (𝑖, 𝑗) =
{
0 if 𝑖 = 𝑗

1, otherwise

where 𝐵 is the batch size, and 𝛿 is a correlation function, where
𝑎, 𝑏 ∈ {𝑡𝑡𝑙, 𝑖𝑛𝑔, 𝑖𝑛𝑠}. To prevent the problem of all embeddings
becoming equal, as shown in Fig. 2, a linear layer is used to apply the
mapping between embeddings and then calculate the loss function.
𝑔𝑎−>𝑏 (·) is the mapping of a linear transformation from the space
of set 𝑎 to the space of set 𝑏. For example, 𝒆𝑡𝑡𝑙 is mapped into
the projection 𝒆𝑡𝑡𝑙−>𝑖𝑛𝑔 in the ingredient embedding space using
𝑔𝑡𝑡𝑙−>𝑖𝑛𝑔 (·), and then the loss with the ingredient embedding 𝒆𝑖𝑛𝑔
is calculated. The calculation of the loss function is as follows:

𝐿
′
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For generalization, the loss function is defined as:

𝐿
′
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Since there are three embedding spaces (title, ingredients, instruc-
tions), a total of six types of transformations, and six types of loss
functions are calculated. Fig. 2 shows two of the six types of loss
functions, which map the title embedding to other spaces. The loss
function can be formulated as follows.

𝐿𝑟𝑒𝑐 =
1
6

∑︁
𝑎

∑︁
𝑏

𝐿𝑏𝑖 (𝑎, 𝑏)𝛿 (𝑎, 𝑏), (5)

𝛿 (𝑖, 𝑗) =
{
0 if 𝑖 = 𝑗

1, otherwise

By using these three embeddings 𝒆𝑡𝑡𝑙 , 𝒆𝑖𝑛𝑔, 𝒆𝑖𝑛𝑠 learned in this way,
more reliable text embeddings can be obtained, and the final recipe
text embedding 𝑹 is obtained through a linear projection layer 𝐸𝑇 .
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Figure 2: Visualization of mapping between title embeddings
𝒆𝑡𝑡𝑙 , ingredients embeddings 𝒆𝑖𝑛𝑔, and instruction embed-
dings 𝒆𝑖𝑛𝑠 and self-supervised learning loss 𝐿

′
𝑟𝑒𝑐 (𝑎, 𝑏).

3.2 Image and Text Embedding Learning
Modality alignment. Similar to ACME [9], to alleviate the
modality gap problem, adversarial learning is used to align the
distributions of the image and text embeddings. Furthermore, in
TNLBT, the distance learning is used to learn cross-modal embed-
dings of pairs. The purpose of alignment is to make the mapped
image-text pair embeddings as close as possible. A discriminator
𝐷𝑀 is used to align the embeddings from two modalities of text
and image. This discriminator is to discriminate whether the given
embedding is from an image or text. By learning the discriminator
so that it cannot discriminate the origin of the given embedding,
the loss function for aligning the embeddings from images and texts
(𝐸𝑉 ( 𝒊), 𝐸𝑇 (𝒕)) can be defined as in Equation (6). Following ACME,
the loss function is defined as:

𝐿𝑀𝐴 =E𝒊∼𝑝 (𝒊) [log(𝐷𝑀 (𝐸𝑉 ( 𝒊)))]
+ E𝒕∼𝑝 (𝒕 ) [log(1 − 𝐷𝑀 (𝐸𝑇 (𝒕)))]

(6)

The image encoder and recipe encoder maximize the loss function
(6), and the discriminator 𝐷𝑀 minimizes it. Through adversarial
learning, the alignment of embeddings from the two modalities is
more effectively performed.
Distance learning with dynamic margins. Given image and
text embeddings 𝑽 = 𝐸𝑉 ( 𝒊), 𝑹 = 𝐸𝑇 (𝒕), to bring the embeddings
of pairs closer and those of non-pairs farther apart. According to
TNLBT [10], a triplet loss is used to reduce the distance between
an anchor sample and a “positive” sample that is a pair, and to
increase the distance from a “negative” sample that is not a pair,
the Euclidean distance is used to calculate the similarity. Inspired
by T-Food [7], we further develop the triplet loss by introducing a
dynamic margin 𝛼𝑑𝑚 , which can be defined as:

𝐿𝑟𝑒𝑡 =
∑︁
𝑉

[𝑑 (𝑽𝑎, 𝑹𝑝 ) − 𝑑 (𝑽𝑎, 𝑹𝑛) + 𝛼𝑑𝑚]+

+
∑︁
𝑅

[𝑑 (𝑹𝑎, 𝑽𝑝 ) − 𝑑 (𝑹𝑎, 𝑽𝑛) + 𝛼𝑑𝑚]+
(7)

where, 𝑑 (·) is the Euclidean distance. The dynamic margin is set to
0.05 at the beginning, increases by 0.05 for each epoch, and is fixed

Figure 3: The architecture of Cross Decoder.

when it reaches 0.3, which allows distance learning to be performed
smoothly. Following ACME [9], the hard sample mining strategy is
used to prioritize learning the hardest samples.
The consistency of embeddings. To ensure the consistency
between the encoded embeddings and the original modality infor-
mation, the same as ACME, TNLBT adopts two kinds of translation
consistency losses. Specifically, 𝐿𝑡𝑟𝑎𝑛𝑠𝑟 is to verify the consistency
of recipe embeddings by generating recipe images through the
obtained recipe text embeddings, and 𝐿𝑡𝑟𝑎𝑛𝑠𝑖 is to verify the con-
sistency of image embeddings by predicting the ingredients of the
recipe through the obtained image embeddings. The loss that com-
bines these two losses is defined as:

𝐿𝑡𝑟𝑎𝑛𝑠 = 𝐿𝑡𝑟𝑎𝑛𝑠𝑟 + 𝐿𝑡𝑟𝑎𝑛𝑠𝑖 (8)

However, different from TNLBT, we propose Cross Decoder to fur-
ther increase this consistency by utilizing the attention mechanism
between image and recipe embeddings. By using Cross Decoder,
not only the accuracy of image generation from recipe embeddings
but also the retrieval accuracy was improved.
Recipe Prediction from Image Embeddings. To ensure the
consistency of the image embeddings, according to ACME, two
kinds of recipe prediction loss are adopted. First, a multi-label in-
gredient predictor is constructed to predict the ingredients of the
recipe using the image embedding. A total of 4102 types of ingredi-
ents are formulated as a one-hot vector. The loss is denoted as 𝐿𝑖2𝑟 .
In addition, a classification loss 𝐿𝑐𝑙𝑠𝑖2𝑟 is used to ensure the image
embedding is related to the correct category of the food image.
The loss is denoted as 𝐿𝑐𝑙𝑠𝑖2𝑟 . As a result, the loss to ensure the
consistency of the final image embedding can be formulated as:

𝐿𝑡𝑟𝑎𝑛𝑠𝑖 = 𝐿𝑖2𝑟 + 𝐿𝑐𝑙𝑠𝑖2𝑟 (9)

3.3 Cross Decoder
Fig. 3 shows the design of our Cross Decoder. The Cross Decoder
consists of six attention blocks. The recipe text embedding 𝑹 is fed
into Cross Decoder𝐶𝑟𝑜𝑠𝑠𝐷𝑒𝑐 as a query, and the image embedding
is input as key and value. The fused cross-modal recipe embedding
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Table 1: Comparison with state-of-the-art methods on Recipe1M dataset.

1k 10k
Image-to-Recipe Recipe-to-Image Image-to-Recipe Recipe-to-Image

medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10

JE[5] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0 41.9 - - - 39.2 - - -
R2GAN[11] 2.0 39.1 71 81.7 2.0 40.6 72.6 83.3 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8
ACME[9] 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6 6.7 22.9 46.8 57.9 6.0 24.4 47.9 59.0
H-T[6] 1.0 60.0 87.6 92.9 1.0 60.3 87.6 93.2 4.0 27.9 56.4 68.1 4.0 28.3 56.5 68.1
X-MRS[2] 1.0 64.0 88.3 92.6 1.0 63.9 87.6 92.6 3.0 32.9 60.6 71.2 3.0 33 60.4 70.7
T-Food[7] 1.0 72.3 90.7 93.4 1.0 72.6 90.6 93.4 2.0 43.4 70.7 79.7 2.0 44.6 71.2 79.7
VLPCook[1] 1.0 73.6 90.5 93.3 1.0 74.7 90.7 93.2 2.0 45.3 72.4 80.8 2.0 46.4 73.1 80.9
TNLBT-C (baseline) 1.0 78.8 94.4 96.8 1.0 79.4 94.7 97.1 1.0 52.2 77.7 84.8 1.0 53.1 78.2 85.3
+CrossDec 1.0 80.9 95.4 97.6 1.0 80.8 95.5 97.8 1.0 55.5 80.2 87.0 1.0 54.5 79.5 86.6

+Dynamic margins 1.0 81.8 95.9 97.8 1.0 81.2 96.0 97.9 1.0 56.5 81.0 87.6 1.0 55.7 80.2 87.1

𝑹∗ containing rich relationships between images and texts obtained
through the Fully Connected (𝐹𝐶) layer and Cross Decoder is as
follows:

𝑹∗ = 𝐶𝑟𝑜𝑠𝑠𝐷𝑒𝑐 (𝐹𝐶 (𝑹), 𝐹𝐶 (𝑽 )) (10)
Then, the same as TNLBT, GAN is used to generate images from the
recipe embedding (𝑅∗). An adversarial loss 𝐿𝑟2𝑖 is used to make the
generated images from the recipe embedding as close as possible
to the real images. The loss can be formulated as:

𝐿𝑟2𝑖 =E𝒊∼𝑝 ( 𝒊) [log(𝐷𝑟2𝑖 ( 𝒊))]
+ E𝑹∗∼𝑝 (𝑹∗ ) [log(1 − 𝐷𝑟2𝑖 (𝐺 (𝑹∗)))] (11)

The smaller this loss, the closer the generated images are expected
to be to real food images. Similar to 𝐿𝑐𝑙𝑠𝑖2𝑟 , to prevent the generated
image from losing the original recipe text information, an additional
classification loss 𝐿𝑐𝑙𝑠𝑟2𝑖 is adopted. A food-category classifier is
used to classify the generated image, and the cross entropy loss is
calculated as 𝐿𝑐𝑙𝑠𝑟2𝑖 . Combining the two losses 𝐿𝑟2𝑖 , 𝐿𝑐𝑙𝑠𝑟2𝑖 above,
the loss to ensure the consistency of the final recipe embedding is
as follows:

𝐿𝑟2𝑖 = 𝐿𝑟2𝑖 + 𝐿𝑐𝑙𝑠𝑟2𝑖 (12)

4 EXPERIMENTS
Dataset and Evaluation Metrics. The same as TNLBT and
previous methods, we evaluate our method on the Recipe1M [5]
dataset, which is split into 238,999, 51,119, and 51,303 image-recipe
pairs for the training, validation, and test sets, respectively. The
recipe information contains the title, ingredients, and instructions.
Besides, for the self-supervised learning of recipes, the remaining
482,231 text-only samples are used. The same as previous research,
we evaluate the retrieval accuracy based on themedian rank (medR),
Recall@{1,5,10} criteria, and the test size is divided into 1k and 10k.
The reported retrieval accuracy is obtained by randomly selecting
data from the test data 10 times and averaging the results.
Implementation Details. We adopt the TNLBT-C as the base-
line model and use the same training settings. TNLBT-C leverages
the CLIP-ViT [4] as the image encoder 𝐸𝑉 . We train the model for
120 epochs with 8 NVIDIA A6000 GPUs, and the batch size is set
to 768.

4.1 Comparison with State-of-the-Art Methods
We reproduce the baseline model TNLBT-C and evaluate the perfor-
mance. Note that we found that there was a bug derived from the

bug of ACME implementation 1 in the evaluation of the original
TNLBT-C. After fixing the bug, the performance became lower than
the results reported in [10]. As shown in Table 1, with our Cross
Decoder, the Recall@{1} retrieval accuracy on Image-to-Recipe un-
der 1k and 10k test size is improved by 2.7% and 6.3%, respectively.
The Recall@{1} on Recipe-to-Image under 1k and 10k test size is
improved by 1.8% and 2.6%, respectively. Then, by introducing dy-
namic margins in the triplet loss, the Recall@{1} on Image-to-Recipe
under 1k and 10k test size is improved by 3.8% and 8.2%, respec-
tively. The Recall@{1} on Recipe-to-Image under 1k and 10k test
size is improved by 2.3% and 4.9%, respectively.

5 CONCLUSION
In this paper, we have explored the use of cross attention between
images and texts for cross-modal recipe retrieval. We proposed
a Cross Decoder to improve the representation capability of the
cross-modal recipe embeddings and introduced dynamic margins in
the triplet loss to improve representation learning. With the advan-
tages of the Cross Decoder and dynamic margins, our method out-
performed the existing state-of-the-art methods on the Recipe1M
dataset.
Acknowledgments: This work was supported by JSPS KAKENHI
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