HOI as Embeddings: Advancements of Model Representation Capability in Human-Object Interaction Detection

Junwen Chen

Yingcheng Wang

Yanai Keiji

The University of Electro-Communications Tokyo

HOI Detection

HOI Instance

• Predict a set of <human, object, interaction> triplets within an image

HICO-DET [1]

HOI benchmark

- Training 38,118
- Test: 9,658

Diversity

- 117 action classes
- COCO's 80 object classes
- 600 HOI classes

chasing a bird

hosing a car

riding a bicycle

tying a boat

feeding a bird exiting an airplane petting a bird

riding an airplane

eating at a dining table boarding an airplane repairing an umbrella herding cows

[1] Chao, Yu-Wei, et al. "Learning to detect human-object interactions." 2018 ieee winter conference on applications of computer vision (wacv). IEEE, 2018.

HOI Detection Approaches

□ Two-stage (Bottom-up)

- Build upon an off-the-shelf object detector

□ One-stage (Top-down)

Interaction Points & HOI Pair Matching

Detection

Detection & Recognition

HOI Detection Timeline

Advancements of HOID

1 QAHOI

• Use multi-scale feature maps to utilize features at different scales

2 PQNet

• Parallelize queries to speed up convergence

③ SOV-STG

 Combine the advantages of QAHOI and PQNet, and introduce denoising learning

QAHOI: Query-Based Anchors for Human-Object Interaction Detection

Chen, Junwen, and Keiji Yanai. "QAHOI: Query-Based Anchors for Human-Object Interaction Detection." arXiv e-prints (2021): arXiv-2112.

HOI Detection Approaches

□ Transformer-based One-stage

- Adapted from Transformer-based object detector DETR
- Set-based Prediction

[2] Tamura, Masato, Hiroki Ohashi, and Tomoaki Yoshinaga. "QPIC: Query-based pairwise human-object interaction detection with image-wide contextual information." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[3] Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Springer, Cham, 2020.

Motivation

□ The spatial distribution of the HOI instances in HICO-DET

- Small objects & Close human-object pairs
- High-resolution feature maps are better to restore detailed features

□ Transformer-based methods lack a multi-scale architecture

Overview of QAHOI

- Multi-scale feature maps from a hierarchical backbone
- A new representation of HOI instances: **Query-based Anchors**
- **Deformable Transformer** Encoder-Decoder Architecture [4]
- Training from scratch

[4] Zhu, Xizhou, et al. "Deformable DETR: Deformable Transformers for End-to-End Object Detection." International Conference on Learning Representations. 2020.

□ Feature Extractor of QPIC

- CNN Backbone + Transformer Encoder [5]
- Low-resolution feature maps from last Stage

□ Multi-scale Feature Extractor of QAHOI

- Hierarchical Backbone (CNN-based or Transformer-based) + Deformable Transformer Encoder
- Multi-scale feature maps from multiple stages

[5] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020.

- Best Model: QAHOI with Swin-Transformer [6] Backbone
- 150 epochs of training

+4.1 (13.9%)

				Fine-tuned	Default			Known Object		
	Arch.	Method	Backbone	Detection	Full	Rare	Non-Rare	Full	Rare	Non-Rare
-	Points	IP-Net [16]	ResNet-50-FPN	×	19.56	12.79	21.58	22.05	15.77	23.92
		PPDM [9]	Hourglass-104	1	21.73	13.78	24.10	24.58	16.65	26.84
		GGNet [18]	Hourglass-104	1	23.47	16.48	25.60	27.36	20.23	29.48
-	Query	HOITrans [20]	ResNet-101	1	26.61	19.15	28.84	29.13	20.98	31.57
		HOTR [7]	ResNet-50	×	23.46	16.21	25.65	-	-	-
		HOTR [7]	ResNet-50	1	25.10	17.34	27.42	-	-	-
. = 00		AS-Net [3]	ResNet-50	×	24.40	22.39	25.01	27.41	25.44	28.00
		AS-Net [3]	ResNet-50	1	28.87	24.25	30.25	31.74	27.07	33.14
		QPIC [15]	ResNet-101	1	29.90	23.92	31.69	32.38	26.06	34.27
+5.88		QAHOI	Swin-Tiny	×	28.47	22.44	30.27	30.99	24.83	32.84
(1) (1)		- QAHOI	Swin-Base	×	29.47	22.24	31.63	31.45	24.00	33.68
		QAHOI	Swin-Base*+	×	33.58	25.86	35.88	35.34	27.24	37.76
		QAHOI	Swin-Large*+	×	35.78	29.80	37.56	37.59	31.66	39.36

[6] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

Contribution at Different Spatial Scales

- The ground-truth HOI instances in the test set of HICO-DET is divided into 10 bins
- The bins with more than 1,000 instances are selected to display the AP results

(a) AP results on different large areas.

(b) AP results on different center distances.

Qualitative Analysis

□ The flexibility of Query-Based anchors

- Far from center
- Close to person or object

The flexibility of the anchors.

Anchors • Top100 A

Top100 Anchors
 Highest Score Anchor

Parallel Queries for Human-Object Interaction Detection

Motivation: More Accuracy and Faster Convergence

Problems of the previous methods

- Transformer-based one-stage methods
 - DETR [Carion et al. ECCV2020] is applied to the HOI task
 - The decoding target of DETR is changed

All of the elements are predicted by the same decoder

Human and object prediction are tangled in the H-O decoder

- Human prediction is disentangled
- Maintaining the targets of the object detector

Proposed method: PQNet

QPIC [Tamura et al. CVPR2021]

CDN [Zhang et al. NIPS2021]

Parallel Queries for Human-Object Interaction Detection

Overview

- Parallel queries are used to split the detecting process
- The verb decoder focuses on extracting the verb representations

Verb Decoder

□ Human-object Embedding Fusion

- Two kinds of attention mechanisms
 - The HOEF module is used to form the verb embedding
 - The cross-attention module is used to extract verb information from the context

+3.06 (10.5%)

Compare with current state-of-the-art (SOTA) methods

		Fine-tuned				Defau	lt	Known Object		
	Method	Detector	Backbone	Feature	Full	Rare	Non-Rare	Full	Rare	Non-Rare
	Two-stage	-	-	-						
	No-Frills [8]	×	ResNet-152	A+S+P	17.18	12.17	18.68	-	-	-
	RPNN [32]	×	ResNet-50	A+P	17.35	12.78	18.71	-	-	-
	PMFNet [26]	×	ResNet-50-FPN	A+S+P	17.46	15.65	18.00	20.34	17.47	21.20
	VSGNet [25]	×	ResNet-152	A+S	19.80	16.05	20.91	-	-	-
	FCMNet [18]	×	ResNet-50	A+S+L	20.41	17.34	21.56	22.04	18.97	23.12
	ACP [13]	×	ResNet-152	A+P+L	20.59	15.92	21.98	-	-	-
	DJ-RN [15]	×	ResNet-50	A+S+P	21.34	18.53	22.18	23.69	20.64	24.60
	PD-Net [30]	×	ResNet-152	A+S+P+L	22.37	17.61	23.79	26.86	21.70	28.44
	DRG [5]	 ✓ 	ResNet-50-FPN	A+S+L	24.53	19.47	26.04	27.98	23.11	29.43
	SCG [29]	✓	ResNet-50-FPN	A+S	31.33	24.72	33.31	34.37	27.18	36.52 —
	One-stage									
	PPDM [16]	✓	Hourglass-104	A	21.73	13.78	24.10	24.58	16.65	26.84
	GGNet [31]	✓	Hourglass-104	A	23.47	16.48	25.60	27.36	20.23	29.48
	HOITrans [34]	✓ ✓	ResNet-101	A	26.61	19.15	28.84	29.13	20.98	31.57
	HOTR [12]	✓ ✓	ResNet-50	A	25.10	17.34	27.42	-	-	-
	AS-Net [4]	✓	ResNet-50	A	28.87	24.25	30.25	31.74	27.07	33.14
	— QPIC [24]	 ✓ 	ResNet-50	A	29.07	21.85	31.23	31.68	24.14	33.93
	QPIC [24]	 ✓ 	ResNet-101	A	29.90	23.92	31.69	32.38	26.06	34.27
	CDN-S [28]	✓ ✓	ResNet-50	A	31.44	27.39	32.64	34.09	29.63	35.42
· · · · ·	— CDN-B [28]	✓ ✓	ResNet-50	A	31.78	27.55	33.05	34.53	29.73	35.96
+0.35	CDN-L [28]	✓	ResNet-101	A	32.07	27.19	33.53	34.79	29.48	36.38
(1.1%)	PQNet-S	✓	ResNet-50	A	31.92	28.06	33.08	34.58	30.71	35.74
	— PQNet-B	 ✓ 	ResNet-50	A	32.13	29.43	32.93	34.68	32.06	35.47 —
	PQNet-L	✓	ResNet-101	A	32.45	27.80	33.84	35.28	30.72	36.64

+0.80

(2.5%)

Experiments

□ The training convergence

- Parallel queries & decoders
 - Improve the model's performance
 - Accelerate the convergence
- Compare to previous SOTA
 - $2 \times$ mAP at the first epoch
 - Fast convergence in the first 40 epochs

Qualitative Analysis

□ The visualization of attention maps

- CDN concentrate on the object more than the human
- PQNet learned to focus on the extreme points of the target
 - The verb decoder focuses on the whole part of the human and object but pays more attention to the interaction regions

Subject Object Verb (SOV) Decoders with Specific Target Guided (STG)

Shifted MBR

Adaptive Shifted MBR

SOV-STG: Focusing on what to decode and what to train

□ End-to-end training pipeline

- SOV framework splits the decoding process into three parts
- STG training strategy efficiently transfers the ground-truth information

SOV-STG: Overview

- The position information is separated from the context query
- Multi-scale feature extractor and SOV decoders
- Learnable anchor boxes and label embeddings provide prior knowledge for inference and noise removal learning

SOV-STG: Split Target Guided DeNoising

DN Query

- Two part initialization
 - Object Label DN Query $oldsymbol{q}_k^o$
 - Verb Label DN Query $oldsymbol{q}_k^v$
- Label Priors
 - Learnable Label Embeddings both used in training and inference

Experiments

□ The training convergence

+4.45%

Compare with current state-of-the-art (SOTA) methods

				Default			Known Object			
	Method	Epoch	Backbone	Full	Rare	Non-Rare	Full	Rare	Non-Rare	
	QPIC [17]		ResNet-50	29.07	21.85	31.23	31.68	24.14	33.93	
CDN-S [28]		100	ResNet-50	31.44	27.39	32.64	34.09	29.63	35.42	
	CDN-B [28]		ResNet-50	31.78	27.55	33.05	34.53	29.73	35.96	
CDN-L [28] PQNet-S [26]		100	ResNet-101	32.07	27.19	33.53	34.79	29.48	36.38	
		70	ResNet-50	31.92	28.06	33.08	34.58	30.71	35.74	
	PQNet-B [26]	100	ResNet-50	32.13	29.43	32.93	34.68	32.06	35.47	
	PQNet-L [26]	100	ResNet-50	32.45	27.80	33.84	35.28	30.72	36.64	
HQM (CDN-S) [35] RLIP-ParSe [38]		80	ResNet-50	32.47	28.15	33.76	35.17	30.73	36.50	
		90	ResNet-50	32.84	34.63	26.85	-	-	-	
MUREN [39]		100	ResNet-50	32.87	28.67	34.12	35.52	30.88	36.91	
DOQ (CDN-S) [34]		80	ResNet-50	33.28	29.19	34.50	-	-	-	
	GEN-VLKT-S [32]	90	ResNet-50	33.75	29.25	35.10	36.78	32.75	37.99	
HOICLIP [40]		90	ResNet-50	34.69	31.12	35.74	37.61	34.47	38.54	
	GEN-VLKT-M [32]	90	ResNet-101	34.78	31.50	35.77	38.07	34.94	39.01	
	GEN-VLKT-L [32]	90	ResNet-101	34.95	31.18	36.08	38.22	34.36	39.37	
1/3 enoch	QAHOI-Swin-L [25]	150	Swin-Large-22K	35.78	29.80	37.56	37.59	31.36	39.36	
1/0 00001	FGAHOI-Swin-L [41]	190	Swin-Large-22K	37.18	30.71	39.11	38.93	31.93	41.02	
	— DiffHOI-Swin-L [42]	90	Swin-Large-22K	41.50	39.96	41.96	43.62	41.41	44.28	
	SOV-STG-S	30	ResNet-50	33.80	29.28	35.15	36.22	30.99	37.78	
l	SOV-STG-M	30	ResNet-101	34.87	30.41	36.20	37.35	32.46	38.81	
SOV-STG-L		30	ResNet-101	35.01	30.63	36.32	37.60	32.77	39.05	
	- SOV-STG-Swin-L	30	Swin-Large-22K	43.35	42.25	43.69	45.53	43.62	46.11	

Conclusion

□ Summary

- A multi-scale transformer-based method, QAHOI for HOI.
- A novel transformer-based one-stage method for HOI detection with parallel queries.
- A new way to represent HOI instances based on query-based anchors

□ Future Work

- Fast and Powerful
- Improved Prior Knowledge

