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Abstract. In the last few years, the advancement of GPT-4 and sim-
ilar extensive large language models has significantly influenced video
comprehension fields, models have been developed to exploit these ad-
vances to enhance interactive video comprehension. However, existing
models generally encode video using image language models or video lan-
guage models with sparse sampling, overlooking the vital action features
present in each video segment. To address this gap, we propose Act-
ChatGPT, an innovative interactive video comprehension model that
integrates action features. Act-ChatGPT incorporates a dense sampling-
based action recognition model as an additional visual encoder, enabling
it to generate responses that consider the action in each video seg-
ment. Comparative analysis reveals Act-ChatGPT superiority over a
base model, with qualitative evidence highlighting its adeptness at rec-
ognizing actions and responding based on them.

Keywords: Multi-Modal Large Language Model · Action Features ·
Video Understanding · Dual-Encoder strategy

1 INTRODUCTION

The evolution of Large Language Models (LLMs) in natural language processing
has led to invention of multi-modal LLMs, combining a visual encoder with LLM
for enhanced video understanding. This fusion projects visual features onto LLM
token spaces, facilitating interactive comprehension. Nevertheless, such models
typically use an image language model as a visual encoder or a video language
model that is conscious of modeling the entire video, neglecting detailed actions
within video segments. Conversely, with the adoption of Transformer [20] and
self-supervised learning in video domain, especially models pre-trained on ex-
tensive video data, has significantly improved action recognition. These models
have high action recognition performance, and in particular, by using models
that operate on individual video segments, it is possible to extract good action
features from each segment of the video.

Therefore, we propose Act-ChatGPT, an advanced multi-modal LLM tai-
lored for video understanding, which emphasizes the utilization of action features
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within each video segment. Act-ChatGPT enhances video comprehension by in-
corporating an action recognition model as an additional visual encoder. This
model, designed to extract action features from each video segment, works in
tandem with Video-ChatGPT’s existing image-based visual encoder. Moreover,
Act-ChatGPT is different from traditional models by adopting a dual-encoder
strategy. This approach combines the object recognition strengths of the visual
language model with the nuanced human action detection of the action recog-
nition model, enabling a richer video understanding. Our contributions are (1)
We propose Act-ChatGPT, which is the first multi-modal LLM for video un-
derstanding that introduces action features within each video segment. (2) The
experimental results showed the effectiveness of our proposed method by out-
performing the baseline, Video-ChatGPT.

2 RELATED WORKS

2.1 LLMs

A language model that has been pre-trained by self-supervised learning with
a large corpus is called a pre-trained language model. Recently, based on the
knowledge that scaling the model parameters and training data of these pre-
trained language models can improve the performance of downstream tasks [10],
large pre-trained language models with a very large number of parameters and
trained on particularly large amounts of data have been constructed. Because
these models have an emergent abilities [26] that has not been seen in small-
scale pre-trained language models, and because they show tremendous ability
in solving a series of complex tasks, they are distinguished from small-scale
pre-trained language models and are referred to as LLMs [24]. LLMs excel in
their ability to generate language and make common sense inferences, and their
use has been studied in many fields, not only in the field of natural language
processing but also in other fields. For example, OpenAI’s GPT-4, which has
been reported to have particularly excellent instruction response performance,
is used for dataset creation, filtering, and data augmentation, because it can be
utilized via API. Since LLaMA [8] and its successor, Llama-2 [7], are the LLMs
whose models and weights are publicly available, they have become the basis for
many LLMs such as Vicuna [3].

Our study delves into utilizing LLMs within the visual domain, particularly
focusing on enhancing video understanding through the integration of action
features, marking a significant step forward in interactive video understanding.

2.2 Multi-Modal LLMs

Current multi-modal LLMs in the visual sphere fall into two primary categories.
The first involves leveraging LLMs to interlink specialized models for diverse
visual tasks, exemplified by Visual ChatGPT [2], a system that integrates nu-
merous expert models through a LLM. This setup allows the LLM to process
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user commands and visual inputs, activating necessary external visual models
to fulfill these commands.

The second category involves the methods that merge visual models with
LLMs by mapping visual encoder-extracted features onto the LLM’s token space,
creating a unified model capable of end-to-end learning. BLIP-2 [12] is included
in this category, that employs a “Q-former” module that aimed to bridge the
gap between the visual encoder’s features and the LLM’s tokens through end-to-
end training using image-text contrast learning, image-text matching and image
grounded text generation. Additionally, this category includes LLaVA [5], which
introduced Instruction Tuning [22] that is used in the field of natural language
processing for visual contexts as Visual Instruction Tuning. This technique en-
hances instruction-following abilities by fine-tuning LLMs with data composed
of instructional texts and their corresponding responses, where visual features
are embedded into the instructional content.

In our study, we focus on the latter method and define the latter as Vision-
LLM, and the Vision-LLM focusing on the video domain is defined as Video-
LLM.

2.3 Video-LLMs

Current Video-LLMs fall into two main categories based on their approach to
video encoding: frame-by-frame encoding using an image language model and
holistic video encoding using a video language model.

The former-type models, such as VideoChat [13], Video-LLaMA [4], Video-
ChatGPT [19], and LLaMA-VID [17], encode videos frame by frame. They em-
ploy the image language model, CLIP [1], as a visual encoder to extract features
from individual frames sampled across the video. These features are often con-
densed and temporally modeled throughout the entire video using pooling and
additional modules before being integrated into the LLM’s token space via a
linear layer.

Conversely, the latter-type models, such as VideoChat2 [14] and Video-LLaVA [18],
encode videos as a whole. Some video language models such as UMT [16] and
LanguageBind [25] capture video-wide features from a limited sampling of 4-16
frames for efficiency. These features are especially focusing on the video’s overall
context rather than the detailed temporal elements contained in each segment
of the video.

Therefore, the existing Video-LLMs do not explicitly model the temporal
features of the video or focus on modeling throughout the entire video and do
not focus on the action in each segment of the video. Our study differs from the
existing methods in that we introduce action features in each segment of the
video to Video-LLM.

2.4 Action Recognition Model

The recent advancements in self-supervised learning have underscored its effec-
tiveness, particularly with transformer-based models such as VideoMAEv2 [21]
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and UMT [16]. These models, pre-trained on extensive video datasets, have
shown remarkable efficacy in action recognition tasks by fine-tuning.

Current action recognition models predominantly fall into two categories
based on their frame sampling techniques. The first employs dense sampling,
a method that extracts multiple video segments of a set frame length through-
out the video, exemplified by VideoMAE v2. The second utilizes sparse sampling,
a strategy that selects a fixed number of frames about 4 or 16 from the entire
video, regardless of its length, as seen in models like UMT [16]. Dense sampling
is suitable for capturing detailed features within individual video segments, while
sparse sampling is suitable for providing a broader overview of features across
the entire video. Those approach, therefore, offers different unique advantages
for modeling action content, in that they either focus on specific segments or the
video as a whole.

3 METHOD

3.1 Overview

We introduce a novel Video-LLM into Video-ChatGPT [19] by integrating action
features. Fig. 1 provides an overview of our method.

.

Fig. 1: The overview of Act-ChatGPT

We employ a dual-encoder strategy for the visual encoder, combined using an
image language model for frame-based image feature extraction with an action
recognition model dedicated to capturing action features from video segments.
Initially, we sample T frames, F ∈ RT×W×H×C , and T sets of 16-frame video
segments, S ∈ RT×16×W×H×C , from the input video. Then, from these samples
image features, Vf ∈ RT×N×Df , and action features, Vs ∈ RT×Ds , are extracted
via their respective encoders. Here, Df and Ds represent the dimensional of
the embedded features from the image language model and the action recogni-
tion model, respectively. N denotes the number of the image language model’s
patches, calculated as N = W/p ×H/p based on the patch size p of the image
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language model where W,H, and C represent the width, the height, and the
channel of the input video.

Subsequently, the extracted image and action features, Vf and Vs, are con-
verted into visual tokens, Qv ∈ R(2T+N)×Dh . Here, Dh represents the dimension
of the LLM’s token space. This is achieved through an Inter-Model Adapter
that projects each feature set into the LLM’s token space and merges them. The
specifics of this conversion process within the Inter-Model Adapter are detailed
further in Section 3.3.

In the final step, the next tokens are predicted from a visual token, Qv, and
a linguistic token, Qt, tokenized from the input text, and then a response text
is generated by LLM. To optimize training efficiency, in our proposed method,
we leverage pre-trained models for both two visual encoders and the LLM and
train only the Inter-Model Adapters.

3.2 Using Trained Models

Our method incorporates several pre-trained models across a visual language
model, an action recognition model, and LLM components. Initially, for the
visual language model, we utilize the OpenAI CLIP [1] ViT-L/14 model. Here,
the outputs from the penultimate layer are harnessed as the image features.
Secondly, as an action recognition component, we employ the VideoMAEv2 [21]
ViT-g/14 model, which has been fine-tuned on the Kinetics-710 dataset [15]. For
this model, the action features are derived by applying Layer Normalization to
the final layer’s output and calculating the mean value. Lastly, for the LLM, we
use Vicuna v1.1 [3], a 7B model fine-tuned for the multi-modal model LLaVA [5].

3.3 Inter-Model Adapter

Fig. 2 provides an overview of our method’s Inter-Model Adapter. The Inter-
Model Adapter is structured from three modules: the Image Feature Conversion
Module, the Action Feature Conversion Module, and the Features Fusion Mod-
ule. Below, we detail the components of each module and outline the processing
procedure.

Image Feature Conversion Module The Inter-Model Adapter of Video-
ChatGPT converting image features into tokens is used for this module. This
process starts by applying both temporal and spatial mean pooling to the im-
age features, Vf ∈ RT×N×Df , extracted from each frame by the image language
model. This process results in temporal features, Vt ∈ RT×Df , and spatial fea-
tures, Vn ∈ RN×Df . Subsequently, these features are concatenated and then
mapped to the LLM’s token space through a single linear layer, ff , resulting in
the converted image feature tokens, Qf = ff ([Vt, Vn]) ∈ R(T+N)×Dh . Here, the
notation [a, b] signifies the concatenation of vectors a and b.
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Fig. 2: The overview of Inter-Model Adapter.

Action Feature Conversion Module This module is designed to analyze the
interplay among action features within video segments and to map these fea-
tures into the LLM’s token space effectively. The first function of this module is
to capture global features that cannot be captured by segment-by-segment fea-
ture extraction by modeling the features in the temporal direction. To achieve
this, it incorporates time embedding and a TransformerEncoder, with the Trans-
formerEncoder set to a single layer featuring two heads mechanisms. Also, a
single linear layer is utilized to map these analyzed features into the LLM’s to-
ken space. During the conversion of action features into action feature tokens in
this module, the process starts with adding temporal embedding to the action
features extracted per video segment by the action recognition model through
the TransformerEncoder. This step produces an enhanced set of action features,
V ′
s = TransformerEncoder(Vs + TE ∈ RT×Ds), reflecting the temporal rela-

tionships between segments. Here, TE represents the temporal embedding that
is the positional encoding in the temporal direction. Finally, a Dropout layer
followed by a single linear layer fs is applied, projecting the refined action fea-
tures V ′

s into the LLM’s token space, resulting in converted action feature tokens
Qs = fs(Dropout(V ′

s )) ∈ RT×Dh .
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Features fusion module To merge the two distinct sets of features effec-
tively, this module utilizes a one-dimensional convolution with a kernel size of
one. The process starts by concatenating the image feature tokens, Qf , and the
action feature tokens, Qs, from the feature conversion modules. This concate-
nated set then is processed by sequentially adapting ReLU, Batch Normalization,
Dropout, and finally, the 1D convolution, resulting in the combined visual token,
Qv = (Conv1d(Dropout(BN(ReLU([Qf , Qs])))) ∈ R(2T+N)×Dh , merged visual
information of image and action information tailored for the LLM.

3.4 Data Augmentation

To address the challenge of insufficient training data our proposed method incor-
porates data augmentation techniques applied to the Video Instruction Dataset
utilized for training. This augmentation process involves rephrasing existing in-
struction response texts, executed with the aid of Vicuna v1.5 [3] 13B. Specif-
ically, paraphrases of the instructions are generated by instructing Vicuna to
use synonyms and thesauruses extensively, avoid incorporating external infor-
mation, and ensure the paraphrased instructions remain faithful to the original
instruction-response relationship. This preserves the relationship between the
instructions provided and the response, and extends the dataset without signif-
icantly deteriorating data quality.

3.5 Training

Our training approach follows Vision Instruction Tuning, utilizing a dataset
comprised of video and corresponding instruction response text pairs, similar
to Video-ChatGPT. The training objective is to minimize the token-by-token
cross-entropy error between the actual responses and the model’s predictions.

The training process is divided into two distinct stages. In the first stage, only
one visual encoder is active, and the feature conversion module corresponding is
trained independently. The model structure at this stage of training is shown in
Fig. 3a and Fig. 3b. This stage’s model architecture, when training the Image
Feature Conversion Module, is similar to Video-ChatGPT [19], with the Image
Feature Conversion Module being initialized using the inter-model adapter of
Video-ChatGPT. The weights of the model-to-model adapter of Video-ChatGPT
are equivalent to the weights of the Image Feature Conversion Module of the pro-
posed method initialized with LLaVA [5] and then trained with the architecture
shown in Fig. 3a using the non-augmented Video Instruction Dataset. Subse-
quently, in the second stage, both feature conversion modules are initialized
with the weights trained in the first stage, and the entire Inter-Model Adapter,
including the features fusion module, then are trained.

3.6 Prompts

The prompts for the LLM are crafted following the format established by Video-
ChatGPT, structured as follows:
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Fig. 3a: The model structure when train-
ing only Image Feature Conversion Mod-
ule.

Fig. 3b: The model structure when train-
ing only Action Feature Conversion Mod-
ule.

USER: ⟨Instruction⟩ ⟨Video-token⟩ ASSISTANT:

Here, ⟨Instruction⟩ denotes the instructions to the LLM, such as queries about
the video, while ⟨Video-token⟩ symbolizes the visual features converted to tokens.
The designations, “USER: and ASSISTANT:”, distinguish between user instruc-
tions and LLM responses, facilitating the LLM’s comprehension of dialogue pro-
gression, particularly in extended conversations. In our method, ⟨Instruction⟩
within the template is replaced by the actual instruction text and tokenized.
Subsequently, the token for ⟨Video-token⟩ is substituted with the visual token
Qv, obtained by the Inter-Model Adapter, before being fed into the LLM.

4 EXPERIMENTS

4.1 Experimental Settings

In our experiments, we follow the sampling parameters of Video-ChatGPT [19],
setting the number of frames and video segments, T , to 100. The Dropout layer’s
probability parameter, p, was adjusted to 0.0 during the first training stage and
increased to 0.5 in the second stage. Additionally, the temperature parameter,
τ , pivotal in controlling the probability distribution of LLM’s token generation
during inference and thus influencing the model’s creativity, was fixed at 0.2,
except where specified otherwise.

The training for both stages utilizes the same dataset and settings, employ-
ing the Video Instruction Dataset [19] derived from a subset of the ActivityNet
dataset [6]. This dataset contains around 100,000 video pairs coupled with single-
turn instruction-response texts. It is created by making instruction-response
texts pertinent to video content using GPT-3.5 from human-crafted captions
being included in a subset of ActivityNet dataset and frame-level captions from
BLIP-2 [12]. As mentioned above, to address the scarcity of training data, our
approach includes a data augmentation strategy, rephrasing instructions via a
LLM, unlike Video-ChatGPT. Optimization is conducted using AdamW, with
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Table 1: The number of questions in each category
Question Set Action Object Total
GENERIC 1466 530 1996
TEMPORAL 481 18 499
CONSISTENCY 231 268 499

a learning rate schedule using linear warmup with a warmup rate of 0.03 and
cosine decay with a peak at 2 × 10−5. Each training stage is trained for three
epochs, following the training of the inter-model adapter in Video-ChatGPT.

The quantitative evaluation is carried out by Video-based Generative Perfor-
mance Benchmarking [19] and AutoEval-Video [23]. For the Video-based Gen-
erative Performance Benchmarking, a test set based on a subset of ActivityNet
dataset [6] as well as the Video Instruction Dataset is used. The evaluation of
each response is performed by GPT-3.5 (the checkpoints used is gpt-3.5-turbo-
0125) to score a relative score on 0 to 5, based on comparison with the correct
answers, in terms of perspective assigned to each data from five perspectives
that are Correctness of Information (CI), Detail Orientation (DO), Contextual
Understanding (CU), Temporal Understanding (TU) and Consistency (C). In
the following, all questions are evaluated three times, and the means and stan-
dard deviations are reported for each item, except where specified otherwise. In
addition, the evaluation questions in the Generative Performance Benchmarking
dataset is divided into two types of questions using GPT-4o (the checkpoints
used are gpt-4o-2024-05-13): action-oriented questions and object-oriented ques-
tions. Action-oriented questions mean the questions on dynamics in the videos
where action features are expected to help to answer, while object-oriented ques-
tions mean the questions on objects and scenes for which image features are ex-
pected to be helpful. The number of both types are shown in Table 1. Note that,
GENERIC is a split of the dataset used evaluating Correctness of Information,
Detail Orientation, and Contextual Understanding. TEMPORAL is a split of
the dataset used evaluating Temporal understanding, and CONSISTENCY is a
split of the dataset used evaluating Consistency. The evaluation results for each
of the two types of questions are reported as well.

For the AutoEval-Video, a uniquely collected and annotated dataset for the
benchmark from YouTube across multiple capability domains and topics is used.
The evaluation of each response was performed by GPT-4 (the checkpoints used
are gpt-4-1106-preview) to judge right and wrong based on the specific evalua-
tion rules defined for each sample, in terms of the perspective assigned to each
sample from nine perspectives: Dynamic Perception, State Transition Percep-
tion, Comparison Reasoning, Reasoning with External Knowledge, Explanatory
Reasoning, Predictive Reasoning, Description, Counterfactual Reasoning and
Camera Movement Perception. In the following, the means of the accuracy of
overall and each item of three times evaluations conducted are reported.

In our study, emphasis was placed on the results of Video-based Generative
Performance Benchmarking, as this is the most commonly used method in exist-
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Table 2: Results of Video-based Generative Performance Benchmarking.
CI↑ DO↑ CU↑ TU↑ C↑

Video-LLaMA 2.23± 1.25 2.16± 0.79 2.52± 1.13 1.93± 1.09 2.02± 1.09
Video-ChatGPT 2.50± 1.33 2.31± 0.85 2.87± 1.18 2.10± 1.15 2.20± 1.24
Video-ChatGPT (scratch) 2.44± 1.31 2.29± 0.83 2.82± 1.17 2.10± 1.11 2.06± 1.19
Act-ChatGPT (scratch) 2.53± 1.34 2.33± 0.82 2.89± 1.21 2.19± 1.15 2.17± 1.23
Act-ChatGPT (w/o data aug.) 2.53± 1.36 2.33± 0.86 2.92± 1.19 2.13± 1.14 2.17± 1.23
Act-ChatGPT 2.62± 1.35 2.37± 0.85 3.00± 1.17 2.20± 1.14 2.28± 1.25

GPT-4o 4.02± 1.13 3.46± 0.92 4.19± 0.92 3.30± 1.30 3.54± 1.23

ing Video-LLM assessments. The results of AutoEval-Video, on the other hand,
were used to check the generalisation performance of the model, as they were
based on dataset collected and annotated in a completely different way to the
training data.

4.2 Comparison with Baseline

A quantitative comparative analysis by Video-based Generative Performance
Benchmarking between our proposed method and Video-ChatGPT [19], Video-
LLaMA [4] is shown in Table 2. Table 2 also includes the results of the evaluation
of responses by GPT-4o for reference. GPT-4o generated the responses based
on the following instruction, using 20 frames sampled from the video: “These
images are frames cut from a single video. Referring to these images, answer
the following questions. However, the actual answers do not require frame-by-
frame explanations, please generate the actual answer to the aggregated video.”
Note that the evaluation of GPT-4o was conducted only once. To make fair
comparison, we show the results excluding data augmentation (denoted as w/o
data aug.) and the results training inter-model adapters with only augmented
Video Instruction Dataset without pre-training with such as LLaVA[5] dataset
(denoted as scratch). Also, the results for action-oriented questions and object-
oriented questions are shown in Table 3 and Table 4.

Our method superior performance across all metrics when compared to ex-
isting models. Also,within the same metrics, there is no significant difference
in standard deviations between different methods. Notably, even in the absence
of data augmentation, our approach surpassed Video-ChatGPT in all but Con-
sistency. This underscored the significant impact of integrating action features
on enhancing theresponse performance of Video-LLM responses. Note that our
method is still clearly inferior to the response by GPT-4o, indicating room for
further development of the open source Video-LLM.

On the other hand, Table 3 and Table 4 show that Act-ChatGPT outper-
forms Video-ChatGPT, especially for action-oriented questions, while conversely
the performance of Act-ChatGPT is slightly less than the baseline in the eval-
uations for only object-oriented questions. Therefore, our proposed method can
be regarded as focusing on action-oriented questions more.
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Table 3: Results of Video-based Generative Performance Benchmarking for the
action-oriented questions.

CI↑ DO↑ CU↑ TU↑ C↑
Video-LLaMA 2.16± 1.11 2.08± 0.68 2.41± 1.04 1.90± 1.05 2.13± 1.14
Video-ChatGPT 2.51± 1.23 2.25± 0.78 2.85± 1.13 2.09± 1.12 2.49± 1.24
Video-ChatGPT (scratch) 2.50± 1.22 2.28± 0.78 2.86± 1.13 2.10± 1.07 2.43± 1.21
Act-ChatGPT (scratch) 2.65± 1.23 2.35± 0.76 3.00± 1.15 2.20± 1.14 2.60± 1.24
Act-ChatGPT (w/o data aug.) 2.62± 1.25 2.32± 0.80 2.97± 1.14 2.13± 1.12 2.54± 1.24
Act-ChatGPT 2.72± 1.24 2.36± 0.78 3.08± 1.11 2.19± 1.10 2.72± 1.23

Table 4: Results of Video-based Generative Performance Benchmarking for the
object-oriented questions.

CI↑ DO↑ CU↑ TU↑ C↑
Video-LLaMA 2.43± 1.56 2.39± 1.00 2.81± 1.29 2.61± 1.76 1.92± 1.03
Video-ChatGPT 2.49± 1.58 2.48± 1.01 2.90± 1.29 2.26± 1.89 1.94± 1.19
Video-ChatGPT (scratch) 2.27± 1.51 2.32± 0.95 2.73± 1.26 2.15± 1.84 1.75± 1.09
Act-ChatGPT (scratch) 2.20± 1.56 2.27± 0.96 2.60± 1.32 1.83± 1.53 1.80± 1.10
Act-ChatGPT (w/o data aug.) 2.28± 1.59 2.36± 1.00 2.77± 1.30 2.33± 1.63 1.84± 1.13
Act-ChatGPT 2.33± 1.58 2.37± 1.02 2.79± 1.28 2.35± 1.89 1.89± 1.14

In addition, a quantitative comparative analysis by AutoEval-Video between
our proposed method and Video-ChatGPT, Video-LLaMA, is detailed in Table 5
and Table 6. As with the Video-based benchmark, we show the results excluding
data augmentation (denoted as w/o data aug.) and the results training inter-
model adapters with only augmented Video Instruction Dataset (denoted as
scratch). In this evaluation, by contrast, our method underperformed the base
model on almost all items. Thus, it can be said that our proposed method has
poorer generalization performance than the Video-ChatGPT. The poor perfor-
mance of Act-ChatGPT for AutoEval-Video mainly comes from the differences
with and without pre-training of inter-model adapters.

The inter-model adapter of Video-ChatGPT is pre-trained with 753k LLaVA [5]
training images and fine-tuned with non-augmented 100k Video Instruction
Dataset, whereas the one for Act-ChatGPT is trained with only augmented 200k
Video Instruction Dataset from scratch, except for the Image Feature Conver-
sion Module, which is initialized with the weights of the inter-model adapter of
Video-ChatGPT. This means that the Image Feature Conversion Module in the
Act-ChatGPT was pre-trained with 753k LLaVa training images as well, whereas
the action feature conversion module was not pre-trained with any dataset. This
is due to the fact that the proposed method uses a segment-based action recog-
nition model for one of the visual encoders in which not image data but video
data is used for training. In fact, when comparing Video-ChatGPT (scratch) and
Act-ChatGPT (scratch) from Table 5, which were trained inter-model adapters
only on the augmented Video Instruction Dataset without pre-training with im-
age data, Act-ChatGPT outperforms Video-ChatGPT on overall accuracy. This
shows that the performance deterioration in the evaluation with AutoEval-Video
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Table 5: Results of AutoEval-Video (overall)
All↑

Video-LLaMA 0.070
Video-ChatGPT 0.101
Video-ChatGPT (scratch) 0.045
Act-ChatGPT (scratch) 0.049
Act-ChatGPT (w/o data aug.) 0.064
Act-ChatGPT 0.064

Table 6: Results of AutoEval-Video (each item)
Dynamic ↑ State Transitions ↑ Comparison ↑

Video-LLaMA 0.059 0.073 0.140
Video-ChatGPT 0.088 0.115 0.246
Video-ChatGPT (scratch) 0.044 0.094 0.176
Act-ChatGPT (scratch) 0.050 0.041 0.123
Act-ChatGPT (w/o data aug.) 0.036 0.083 0.123
Act-ChatGPT 0.029 0.073 0.193

External Knowledge ↑ Explanatory ↑ Predictive ↑
Video-LLaMA 0.084 0.040 0.041
Video-ChatGPT 0.084 0.086 0.135
Video-ChatGPT (scratch) 0.016 0.035 0.031
Act-ChatGPT (scratch) 0.042 0.045 0.000
Act-ChatGPT (w/o data aug.) 0.062 0.066 0.062
Act-ChatGPT 0.050 0.066 0.052

Description ↑ Counterfactual ↑ Camera Movement ↑
Video-LLaMA 0.056 0.140 0.000
Video-ChatGPT 0.044 0.123 0.111
Video-ChatGPT (scratch) 0.022 0.035 0.111
Act-ChatGPT (scratch) 0.011 0.176 0.000
Act-ChatGPT (w/o data aug.) 0.067 0.053 0.000
Act-ChatGPT 0.044 0.123 0.000

observed in Act-ChatGPT is due to the lack of pre-training data, not to the in-
troduction of the proposed action features. This does not negate the effectiveness
of the proposed method.

Fig. 4 shows qualitative comparisons between Act-ChatGPT and Video-
ChatGPT. The observations from the top and middle response results in Fig. 4
illustrate that Act-ChatGPT enhances responses over Video-ChatGPT by im-
proving action recognition as well as the identification of objects involved in these
actions. It is conceivable that this improvement in object recognition is due to
the fact that the large language model recognizes action features in a different
way to spatial features, allowing the consistency of object and action elements
as sentences to be taken into account when generating responses. Furthermore,
the bottom response result in Fig. 4 demonstrates that Act-ChatGPT retains
the capability to recognize unique objects, as observed in Video-ChatGPT.
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Fig. 4: Examples of responses.
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4.3 Ablation Studies

In the ablation studies, Video-based Generative Performance Benchmarking is
used. Table 7 displays the quantitative results for Act-ChatGPT under various
settings. Specifically, (w/o Stage1) denotes results from training solely in the
second stage, (w/o Fusion) refers to scenario not using a features fusion module,
while (w/o Image) and (w/o Action) refer to scenarios where only the action
recognition model or the image language model is employed as a vision encoder,
respectively. Note that the evaluation was conducted only once in each setting
and the results are reported. As a side note, even when only one visual en-
coder is used, the feature fusion module was applied by adjusting the number of
dimensions. The findings reveal a notable decline in performance metrics when
Act-ChatGPT is trained solely during the second stage, underscoring the critical
role of multi-stage learning. Moreover, utilizing only one type of visual encoder,
whether for actions or images, leads to significant drops in all metrics. These
outcomes suggest that image and action features play complementary roles in
video understanding and emphasize the benefits of action features utilized in
video understanding. In addition, focusing on feature fusion, the performance
significantly deteriorated is found when features were not fused. This shows that
in this research, where a LLM is frozen, a mechanism for explicitly fusing features
is important for improving the performance.

Table 7: Results of Video-based Generative Performance Benchmarking under
various settings.

CI↑ DO↑ CU↑ TU↑ C↑
Act-ChatGPT (w/o Stage1) 2.28± 1.32 2.20± 0.89 2.66± 1.24 2.00± 1.16 2.01± 1.46
Act-ChatGPT (w/o Image) 2.17± 1.34 2.03± 0.85 2.46± 1.22 1.86± 1.07 1.99± 1.12
Act-ChatGPT (w/o Action) 2.41± 1.31 2.21± 0.82 2.74± 1.20 2.19± 1.16 1.97± 1.23
Act-ChatGPT (w/o Fusion) 2.39± 1.32 2.23± 0.89 2.74± 1.24 2.12± 1.16 2.26± 1.21
Act-ChatGPT (w/ all) 2.62± 1.35 2.37± 0.85 3.00± 1.17 2.20± 1.14 2.28± 1.25

5 LIMITATIONS

In our study, a new Act-ChatGPT with a newly introduced action feature was
proposed. Several limitations still remain. The first major limitation relates to
training data. In the recent trends in Video-LLMs, as Peng Jin et al. [9] have
shown the advantages of joint learning of images and videos, it has become main-
stream to learn various visual representations by also utilizing a large amount of
image data in addition to video data. However, in our work, we used an action
recognition model that operated on a video segment basis as part of the visual
encoder. This design choice made it difficult to utilize image data for training.
Therefore, to keep up with these trends and achieve better performance, it is
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necessary to create extensive video datasets to compensate for the lack of data
or develop methods to utilize images for training.

The second limitation is in the computational cost. The computational cost
of our proposed method is relatively high because it employs a large action
recognition model. Additionally, our dual-encoder approach, which processes a
certain amount of object features in the action branch, further contributes to
these costs. The action recognition model used in our proposed method, trained
on the Kinetics dataset [11] that are considered relatively easy to classify even
with only scene information, includes somewhat object recognition capabilities.
However, these capabilities are sometimes redundant in our method since the
image branch already handles object recognition. This redundancy suggests a
need for the more focused and compact model that extracts only movement
features, which could help in reducing computational expenses.

6 CONCLUSIONS

In this paper, we proposed Act-ChatGPT, a Video-LLM designed to use action
features from individual video segments to enrich response generation with in-
sight into the action depicted. Act-ChatGPT enhanced both action and their
associated object recognition capabilities, outperforming the Video-ChatGPT
used as a base model. In addition, it also retains a certain level of object recog-
nition capabilities, such as identifying unique objects in the video, demonstrating
the improvement in video understanding over the base approaches overall.
Acknowledgments: This work was supported by JSPS KAKENHI Grant Num-
bers, 22H00540 and 22H00548.
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