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Abstract. Multimodal Large Language Models (MLLMs) can perform
various food-related tasks with high quality. Notably, high-performance
MLLMs, such as GPT-4V, can even estimate caloric content from food
images. However, these MLLMs often struggle to accurately recognize
volume information, which often leads to errors in calorie estimation.
To address this issue, we propose a new MLLM framework called Calo-
rieVoL, designed to enhance the recognition of volume information in
food items. By integrating this framework into MLLMs like GPT-4V, we
achieved higher scores in terms of MAE and correlation coefficients on
Nutrition5k compared to simple MLLMs. Our experiments also showed
that the volume-aware recognition improved responses in scenarios where
accurate volume estimation is critical.

Keywords: Multimodal Large Language Models · Image-based Calorie
Estimation · Volume Estimation.

1 Introduction

By recording daily food intake, we can obtain valuable information that helps
achieve health-related goals such as dieting and bodybuilding. For this pur-
pose, manual dietary survey frameworks like food diary method, 24-hour recall
method, and food frequency questionnaire are widely used among nutrition ex-
perts. However, these methods are time-consuming and require participants to
weigh or recall their food intake, which poses a challenge to them. Moreover,
caloric content of daily food is a critical metric for maintaining a healthy lifestyle.
Therefore, quickly and easily estimating the caloric content of food can have a
significant impact on the healthcare field.

Taking pictures of food using smartphones or camera-equipped AR devices
is an easier approach for people to keep a food diary. However, daily food varies
widely in type and quantity, which leads to variance in the caloric content. Thus,
it is important to build models that can correctly recognize the type and quantity
of food from images for calorie estimation.

Large Language Models (LLMs) have acquired a wide range of common-
sense knowledge about the world. Mainly, LLMs that have undergone recent
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instruction tuning can reason tasks based on the commonsense they possess
when provided with prompts designed for the tasks [1]. Multimodal Large Lan-
guage Models (MLLMs) can solve image recognition tasks while retaining the
reasoning capabilities of LLMs [2]. Some models have acquired specific knowl-
edge in fields such as bio-medicine, achieving human-level performance [3]. Some
advanced models can also perform reasoning food-related tasks by recognizing
various types of food [4]. However, these models cannot recognize the volumetric
amount of food accurately.

In this study, we propose a framework called CalorieVoL that utilizes food
recognition capabilities of MLLMs for image-based calorie estimation. While
leveraging MLLMs to cover the diversity of food that conventional calorie es-
timation methods could not achieve, we introduce a novel volume estimator to
complement the volume estimation capabilities that MLLMs struggle with. This
approach allows us to estimate the caloric content of food images with high qual-
ity, even for food images that were not explicitly trained for calorie estimation
tasks.

The main contributions of this study are as follows:

– We introduce CalorieVoL, a framework that enables volume-aware recogni-
tion for image-based calorie estimation using MLLMs.

– We introduce a new plug-in volume estimator by utilizing off-the-shelf SOTA
models to integrate volume information into MLLMs.

– We evaluate the performance of CalorieVoL on the Nutrition5k [5] dataset
and discuss the effectiveness and challenges of this method.

2 Related Work

2.1 Image-based Calorie Estimation

Estimating the caloric content of food items shown in images has been attempted
through various methods due to its applicability [6]. There are primary ap-
proaches called size-based methods, where a pipeline is constructed that com-
bines multiple image recognition modules to estimate caloric content. The basic
procedure involves first segmenting the food regions from the meal image, then
estimating the food category, followed by estimating the volume or mass of the
food region. Subsequently, the caloric content is estimated based on these re-
sults. By taking these steps before estimating the caloric content, these methods
can particularly consider the quantity of food.

To determine the metric size of the food region, some methods estimate the
actual size of objects included in the food image. Okamoto et al. [7] used a
credit card or a long wallet as a reference, Akpa et al. [8] used chopsticks as a
reference, and Ege et al. [9] used rice grains as a reference. Furthermore, Tanno
et al. [10] employed a method using anchors placed in an AR space, obtaining the
actual size through interaction with the user. DepthCalorieCam [11] significantly
reduced the error in calorie estimation by estimating the food volume using a
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depth camera and a segmentation model. Naritomi et al. [12] reconstructed high-
quality 3D meshes of the dish and food using an implicit function representation.

However, these size-based methods lack variety in food. For example, DepthCalo-
rieCam is limited to estimating only three categories of food, which causes the
lack of applicability.

In this study, inspired by size-based methods, we create a food volume estima-
tor by combining an open-set segmentation model, a promptable segmentation
model, and a monocular depth estimation model. We aim to achieve zero-shot
calorie estimation with high quality, without the need for training on the target
dataset.

2.2 Multimodal Large Language Models

In recent years, Large Language Models (LLMs), which are language models
trained under large-scale conditions with a substantial number of model param-
eters, data, and computational resources, have achieved high performance across
various language tasks. These models exhibit a power-law improvement in per-
formance as the scale of learning conditions increases [13]. they also demonstrate
emergent abilities where their performance improves dramatically at a certain
stage as the learning conditions are scaled up [14]. These new aspects, which
were not observed in conventional language models, are attracting significant
attention.

Multimodal Large Language Models (MLLMs) are constructed by extending
the ability of LLMs to other modalities. Flamingo [15] acquired the ability to
answer various vision-language questions by fusing the visual features with text
features using gated cross-attention dense blocks. LLaVA [2] employed a linear
or MLP layer to transform the visual features into the shape of the language
tokens. Additionally, it adopted a training framework called Visual Instruction
Tuning, which resulted in high-quality instruction-following ability for vision-
language tasks. MiniGPT-4 [16] and InstructBLIP [17] also acquired abilities
to solve a wide range of tasks by using Q-Former [18] as the vision-language
connector and applied training framework similar to Visual Instruction Tuning.

In food domain, FoodLMM [19] achieved high performance in various food-
related tasks, including image-based calorie estimation. we particularly focuses
on improving the performance of calorie estimation from various food images
without the need to train.

3 Methods

The overview of CalorieVoL is shown in Fig. 1. CalorieVoL consists of two main
components: a part that uses MLLMs as a calorie estimator and a part that
estimates the volume of food (Section 3.1). By combining these components, we
construct CalorieVoL (Section 3.2).
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Vision Encoder (CLIP ViT-L)

Estimate the calorie value
in one serving of this dish.

You can use the volume information
of the dish: {volume} ml.

Vision-Language Connector (MLP)

Tokenizer

Embedding

image

Volume Estimator

149 kcal

volume

Language Model (Vicuna-v1.5)

Fig. 1. Overview of CalorieVoL (the case of LLaVA-v1.5)

3.1 Volume Estimator

We construct a model that recognizes the food portion from a meal image and
estimates its volume. The process from inputting the image to outputting the
volume value is shown in Fig. 2.

The process of volume estimation is as follows (Fig. 2). First, the bounding
box of the dish is obtained using Grounding DINO [20], an open-set object
detection model. Next, the process is divided into three parts using this region of
interest. First, the dish’s region mask is obtained by applying Segment Anything
(SAM) [21] to the region of interest. Second, the bounding box of the food portion
is obtained by applying Grounding DINO to the region of interest, followed by
applying SAM to obtain the region mask. Third, the depth map is obtained by
applying Marigold [22], a monocular depth estimation model, to the region of
interest.

Based on these two obtained masks and the depth map, the actual volume
is estimated. First, the element-wise Hadamard product between the depth map
and each mask is taken to extract the regions of each mask. Next, the maximum
value within the dish’s region in the depth map is obtained and used as the depth
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Fig. 2. Structure of the food volume estimator

of the dish’s reference plane. Then, the difference is taken between each value in
the depth map of the food region and the depth of the dish’s top surface. This
provides the ratio of the height from the dish’s reference plane to the top surface
of the food to the height from the shooting position. Furthermore, the actual
height from the dish’s reference plane to the top surface of the food for each
pixel is obtained based on the actual height from the dish’s reference plane to
the shooting position and this ratio. Finally, the volume integration is performed
for all pixels in the food region’s depth map based on this height and the actual
area per pixel. The volume integration value at this time is calculated using
(1). Here, V represents the actual volume of the food, Dij represents the actual
height of the pixel at row i and column j, and Aij represents the actual area of
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Table 1. Results of zero-shot calorie estimation by MLLMs on the Nutrition5k dataset

Model MAE / kcal ↓ MAPE / % ↓ r ↑
LLaVA-13B 109.6 92.8 0.656

GPT-4V 106.6 54.8 0.688
LLaVA-13B + CalorieVoL (Ours) 6122.7 6591.4 -0.041

GPT-4V + CalorieVoL (Ours) 101.7 56.8 0.708

the pixel at row i and column j.

V =

n∑
i=1

m∑
j=1

DijAij (1)

3.2 CalorieVoL

We use GPT-4V [4] and LLaVA-v1.5 [2] as the MLLMs for the reasoning of
calorie estimation. The text prompt is constructed to encourage the LLM to
estimate the calorie value in one serving of the dish. Additionally, it includes
a placeholder {volume}, where the volume value estimated from the volume
estimator will be substituted. This allows the LLM to estimate the calorie value
based on the volume of the food.

4 Experiments

4.1 Evaluation of Calorie Estimation

We conducted evaluations using the test split of the Nutrition5k dataset. It
should be noted that none of the models were trained on Nutrition5k dataset,
making this an evaluation of zero-shot calorie estimation. The temperature is
set at 0 through the evaluation.

Table 1 shows the results of zero-shot calorie estimation. If the output text of
a model did not include the calorie value, the result was obtained by repeating
the same question up to five times with a temperature parameter set to 0.2. As
a result, 79 data points were excluded from the evaluation for the model that
combined GPT-4V with the food volume estimator. It can be observed that
the model combining the proposed food volume estimator with the base model,
GPT-4V, achieved better scores on MAE and correlation coefficient.

Fig. 3 and Fig. 4 show scatter plots of the estimated values and the ground
truth for zero-shot calorie estimation. Although there is not a significant differ-
ence overall, the correlation coefficient is higher for the model combined with
the food volume estimator.

Additionally, Fig. 5 and Fig. 6 present examples of the model responses in
zero-shot calorie estimation. In Fig. 5, it can be seen that the estimation results
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are improved significantly as the volume estimation results from the proposed
method are considered in the calorie estimation process. On the other hand,
Fig. 6 shows an example of overestimation when LLaVA-v1.5 is used as the
MLLM. Observing the reasoning process, it can be seen that the calorie value of
the dish is initially estimated relatively accurately. However, in the latter part,
the calorie value seems to have been incorrectly multiplied by the volume value,
leading to the final overestimated result. This suggests that the overestimation
occurred due to the MLLM’s inability to properly recognize units and perform
calculations accurately.

4.2 Evaluation of Volume Estimation

Fig. 7 shows the estimated volume values. It can be observed that the shape of
the distribution resembles the distribution of the true calorie values (Fig. 3).

Additionally, Fig. 8 presents the results of object detection, segmentation,
and depth estimation during the volume estimation process. For object detec-
tion and segmentation, appropriate regions for both the dish and food were
successfully extracted, demonstrating overall high-quality estimation. For depth
estimation, variations in the uneven surfaces within the image are well repre-
sented. Furthermore, in the image containing multiple types of food, the depth
values in areas with different heights are noticeably distinct from the surrounding
values.

5 Direction of Improvement in Volume Estimation

The food volume estimator proposed in this study has two main characteristics
that may lead to an overestimation of volume (Fig. 9). First, the volume from
the bottom of the food to the reference plane of the dish may be overestimated.
Second, when the lowest part of the dish is covered by food, an incorrect reference
plane of the dish may be selected.

In the research of DepthCalorieCam [11], after the volume is calculated using
a method similar to the one in this study, the volume value is input into a
food mass regression model. This model adjusts the estimate by accounting for
the overestimated volume, leading to an accurate calorie estimation. Another
approach, as suggested by Naritomi et al. [12], is to reconstruct high-quality 3D
shapes of the dish and food, ensuring that the area between the bottom of the
food and the reference plane of the dish does not affect the food volume.

However, creating models to implement these methods would require a large
amount of food data, which would be burdensome to prepare. For the method
that estimates the excess volume, a large amount of annotated data on volume
would be needed to train the model. Additionally, for the method of reconstruct-
ing 3D shapes, the existing performance of 3D shape reconstruction methods is
not sufficient, especially in the food domain, necessitating a large amount of 3D
shape data for improvement.
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Fig. 3. Scatter plot of estimated calorie values by GPT-4V

Fig. 4. Scatter plot of estimated calorie values by GPT-4V and the food volume esti-
mator
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Answer: 687 kcal

User

This is a bowl of almonds. A typical serving size of almonds is about 1 ounce (28 grams),
which is roughly 23 almonds and contains approximately [[160]] calories. However, without
a reference for the exact amount in this bowl, it's difficult to provide an accurate calorie
count. If this bowl contains about one serving, then the calorie estimate would be around
[[160]] calories. If it contains more, the calorie count would be higher accordingly.

GPT-4V

The image shows a bowl of almonds. Almonds are a nutrient-dense food, and a typical
serving size of almonds is about 1 ounce (28 grams), which is approximately 23 almonds.
This serving size generally contains about 160 to 170 calories. However, the bowl in the
image appears to contain more than a single serving.

Without knowing the exact weight or number of almonds in the bowl, it's challenging to
provide an accurate calorie count. If we assume the bowl contains around 3 servings
(which is a rough estimate based on visual assessment), the calorie content would be
approximately 480 to 510 calories.

Given the volume information of the dish (527 ml), and assuming the bowl is filled mostly
to the top, it could potentially hold around 4 to 5 ounces of almonds (since almonds are not
a liquid and their volume would not directly convert to weight). This would mean the bowl
might contain around 640 to 850 calories, depending on the exact amount and whether the
almonds are raw or roasted, which can slightly affect the calorie content.

For the purpose of providing a single calorie value, I will estimate the calorie content of the
bowl of almonds as follows:

[[700]] calories

Please note that this is a rough estimate and the actual calorie content could be higher or
lower depending on the precise amount of almonds in the bowl.

GPT-4V+Vol
(Ours)

Estimate the calorie value in one serving of the dish.
Return the single calorie value in the following format: "[[x]] calories".
This information is essential and must be provided in every response.

Example: "[[100]] calories"

User Estimate the calorie value in one serving of the dish.
Return the single calorie value in the following format: "[[x]] calories".
This information is essential and must be provided in every response.

Example: "[[100]] calories"

You can use the volume information of the dish: 527 ml.

Fig. 5. Example of calorie estimation by the model combining GPT-4V and the food
volume estimator
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Answer: 149 kcal

To estimate the calorie value in one serving of the dish, we need to know the ingredients
and their respective calorie counts. Since the image shows a plate of scrambled eggs, we
can assume that the dish is primarily composed of eggs.

The calorie value of one serving of scrambled eggs can vary depending on the number of
eggs used and the cooking method. However, as a rough estimate, we can assume that
one serving of scrambled eggs contains around 200-250 calories.

To calculate the calorie value for the entire dish, we need to know the volume of the dish,
which is 445 ml. To convert the volume to weight, we can assume that the dish is made up
of 445 grams of scrambled eggs.

So, the calorie value of the dish would be approximately 98,000 to 112,000 calories.
However, this is a rough estimate and may not be accurate, as the actual calorie count can
vary depending on the specific ingredients and cooking method used.

LLaVA-13B+Vol
(Ours)

User Estimate the calorie value in one serving of the dish.
Return the single calorie value in the following format: "[[x]] calories".
This information is essential and must be provided in every response.

Example: "[[100]] calories"

You can use the volume information of the dish: 445 ml.

Fig. 6. Example of overestimation by the model combining LLaVA-v1.5 and the food
volume estimator
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Fig. 7. Distribution of estimated food volumes

On the other hand, recent efforts have been made to achieve high-quality 3D
shape reconstruction methods based on techniques such as NeRF [23] and 3D
Gaussian Splatting [24]. By leveraging these approaches, it is expected that the
challenges in volume estimation will be comprehensively addressed.

In terms of accurately capturing the spatial information of input images in
MLLMs, methods such as SpatialVLM [25] exist. This method extracts various
information from the input image using expert models like depth estimation
and segmentation, integrates these results, and trains the MLLM based on the
reconstructed 3D information. It is a promising direction to utilize off-the-shelf
models to construct 3D information and train MLLMs to recognize food more
spatially.

Furthermore, to prevent overestimation of calorie values under zero-shot con-
ditions, it seems promising to prompt the language model to revise and correct
the reasoning process when an output with an unreasonable calorie value is
generated, based on the commonsense knowledge on food in MLLMs.

6 Conclusion

In this study, we proposed CalorieVoL, a novel framework that enhances the
calorie estimation from food images by incorporating volumetric context into
MLLMs. Our evaluations on the Nutrition5k dataset under zero-shot conditions
demonstrate that CalorieVoL with GPT-4V improves the estimation accuracy,
particularly in scenarios where the quantity of food plays a critical role.
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Estimated Volume: 445.3 mL
GT Caloirie: 149 kcal
Estimated Calorie: 144 kcal

Estimated Volume: 600.3 mL
GT Calorie: 156 kcal
Estimated Calorie: 222 kcal

Fig. 8. Results of object detection, segmentation, and depth estimation. Top left: orig-
inal image, bottom: dish region mask, food region mask, and depth map.

Fig. 9. Overestimation of volume by the food volume estimator when the food is as-
sumed to be spherical. Blue: food region, Red: excess region.

We also identified challenges related to the volume estimation and the over-
estimation of food volume. We discussed potential approaches to address these
issues, including the incorporation of mass regression models and advanced 3D
shape reconstruction techniques. Looking forward, integrating the methods such
as NeRF and 3D Gaussian Splatting, as well as adopting spatial-aware MLLMs
training frameworks, could further enhance the accuracy and applicability of
calorie estimation models.

Overall, CalorieVoL represents a promising step towards more accurate and
reliable calorie estimation from food images, with potential applications in per-
sonalized nutrition and healthcare. Future work will focus on refining the volume
estimation process and correcting the reasoning procedure with MLLMs.
Acknowledgments This work was supported by JSPS KAKENHI Grant Num-
bers, 22H00540 and 22H00548.
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