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“Sushi” in Caltech 256

 (Probably) Collected in English keywords
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“Sushi” in our own dataset

 Collected in Japanese keywords
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Which do you like to eat ?
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Caltech “sushi” Japanese “sushi”

These two “sushi” image sets are surely 
different,  although both are image sets
associated with the “sushi” concept !



“Sushi” over the world

 Image sets corresponding to the same concept 
are changing depending on locations or cultures.
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Questions about concepts and 
locations (or culture)

 From this observation, representative
image sets associated with a given 
concept might change (slightly) 
depending on locations or cultures.

 Which concepts are location-dependent ?

 Which concepts are global (unchanged) 
over the world ?    (e.g. “sea”, “sky”)

 How concepts change depending on 
locations ? 

Questions?



“Sea”:   global concept
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The Aegean sea The Japanese sea



1. Objective,

Background

& Related work



Objective of this paper

 Analyze the relationship between word 
concepts and locations 
using geotagged photos on Flickr

 Consist of two parts:

1. Entropy-based analysis

2. A system to detect “cultural differences”

They are relatively independent. 
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Background:  geotagged photos 

 The number of geotagged photos on the 
Web grows rapidly:  Flickr, panoramio

 Flickr has 100,000,000 geotagged photos.

A “geo-tag” 

represents the 

coordinates 

(latitude,longitude) 

of a location where 

a photo are taken. 

(Feb. 2009)



Related work: Geotagged image

Many work used geotags to organize    
landmark photos. 

 Toyama et al. (2003)

 Jaffe et al. (2006)

 Simon et al. (2007) 

 Kennedy et al. (2008)

…… and other many works.
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The exception is “IM2GPS” [Hayes et al. 2008]
among works on geotagged photos using image analysis.



Related work: “IM2GPS”[Hayes et al. 08]

 Estimate the probability distribution over the 
world by nearest neighbor search for large-
scale geotagged image DB. (ignoring “concepts”)

 This work suggests there exists the relation 
between visual features and geo-locations.



fish

There are many non-landmark 
geotagged photos in Flickr !  

mosquito

tulip Deutschland



2. [Part 1]
Entropy-based analysis



Entropy-based analysis

Examine the relation between distributions
of visual features and geo-locations
for many concepts 

1. Entropy-based measure of visual features
(Modified method of [Yanai and Barnard 05] )

2. Entropy-based measure of geo-locations

3. Analysis the relation between two kinds of 
entropy
 For 230 nouns



Image region entropy

 A measure of “visualness” of words (concepts)

 Represent the property of the distribution of 
image region features

Biased / uneven:

low entropy

having “visualness”

Random/uniform:

high entropy

not having “visualness”

“Low entropy” means the concept has visual property,
“High entropy” means the concept has less visual 
property.

[Yanai and Barnard 05]



Low entropy: “scary”

“Visual” concept
Detected
“scary”

regions

[Yanai et al. 05] 

[Yanai and Barnard 05]



High entropy: “famous”

“Non-visual” concept

[Yanai and Barnard 05]



Modified image region entropy  

 Follow “image region entropy” [Yanai et al. 05]

1. Use region-based BoF instead of color, texture

2. Use mi-SVM to select relevant regions

3. Model the distribution of region-based BoF
vectors with pLSA instead of GMM 

4. Calculate entropy based on pLSA vectors

For excluding 

background 

and noise regions

JSEG

Randomly-sampled
SIFT-based bag-of-
features(BoF) 
(1000-dim)



Multiple Instance Setting

 Positive bags / Negative bags
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Positive instances of “flower”
The rest of regions are 
negative regions. 

negative ins.
(background) 

positive ins.
(foreground) 

pseudo-training images random images 



mi-SVM     [Andrew et al. NIPS 03]

 Apply soft-margin SVM iteratively

 Training → classifying → training →
classifying → ……   (repeat 5 times)

26

negative ins.
(background) 

positive ins.
(foreground) 

During the iteration, the hyper-
plane is approaching the optimal 

plane to discriminate positive 
instances from negative ones.



Distribution modeling with the 
PLSA topic mixture

① Apply PLSA for all the regions of all the 
random (background) images in advance

Obtain P(w | z)  and fix it (based distribution)

② Estimate P(z | d) for each regions with fixed
P(w | z) using fold-in heuristic [Hofmann 09]
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w: visual words, d: regions, z: topic 

10,000 random Web images 



Calculate image region entropy

 H(X): entropy of the given word “X”

 H(X) can be calculated
from each of 5 iterations of mi-SVM

 Regard the minimum H(X) during 
5 iterations as the final entropy H(X)



Calculate geo-location entropy

1. Divide the world into 4 kinds of grids 
with every 10 degrees by shifting 5 
degrees  in terms of both latitude and longitude

2. Build histograms regarding the geotags
of the selected regions

3. Calc entropy   

4. Select minimum one

Geo-location entropy



3. [Part 1] Results of

entropy-based

analysis



Experiments

 Data
 230 nouns including various kinds of words

• Gathered photos including the given nouns as their tags

 500 geotagged photos at least/ each tag
from Flickr

(limiting 5 photos for each tag per user ID)

 After selecting relevant regions for each tag, 
calculate the two entropy:
Image region entropy Hvis(X)    
Geo-location entropy Hgeo(X)

 Analyze relation between them



Image region entropy Hvis(X)

名詞 H(X) 画像の一部

sun 3.6497

rainbow 4.5538

moon 4.6686

mozart 7.8349

lincoln 7.7327

school 7.6173



Geo-entropy Hgeo(X)

Deutschland

mosquito

2602.0)( XH geo

9759.5)( XH geo

Rome

3843.0)( XH geo

fish

7831.5)( XH geo



Image entropy vs. geo-entropy



They exists everywhere in the world, 
and the apperances are similar.

• Comcepts related to sky

– Image region entropy ： low

– Geo-location entropy ： high

sun

Sun, rainbow, moon 



 Image region entropy： high

 Geo-location entropy ： low

mozart

Rome, Deutschland, Mozart

The geotags concentrates

on specific areas. Their

appearances are various.



tulip

• Variance of color did not reflect
on image region entropy, since we 
use SIFT-based BoF representation. 

• Holland and England are main areas.

Image region entropy： low
Geo-location entropy ： med.



dolphin

• In seaside areas over the world

• Most of dolphins are taken in sea
or aquarium

Image region entropy： high
Geo-location entropy ： high



rice

= 5.3425)(XH geo

Image region entropy： high
Geo-location entropy ： high



4. [Part 2]

Discovering concept 

differences in terms 

of location



Image entropy vs. geo-entropy

We need to analyze more !



Objective of the second part

• A system to mine representative 
photos for representative areas or 
regions from geotagged photo DB. 

Utilize the set of geo-
tagged photos on Flickr

Raw geo-tagged 

photos on Flickr
Relevant photos after 

noise image removal

Representative photos 

for typical regions



Motivation : Foods over the world 

 So with such geotagged photos, we can 
discover specific objects over the world. 

 Do you know all kinds of  famous “noodles ” in the 
world?  
“Ramen”and“Soba”in Japan, “Thai noodle” in Thailand, 

“Chinese noodles”, “rice noodle” Taiwan, “Spaghetti”in Italy…



 How do such scenes as “beach”, “waterfall”, 
“mountain” look like in different areas in the world?

 How about other objects such as “flower”, “castle”, 
“clothes” , “car”, “sushi” ……

As a result, we can discover cultural differences 
on specific concepts over the world !



Approach :  three steps

1) Select relevant photos and remove noise
 Extract BoF vectors from all the images 

 Visual clustering with k-means

 Select most relevant clusters based on the size of clusters

2) Detect representative regions
 Clustering based on geographic locations by k-means

3) Generate representative photo sets
for representative regions
 Generate the PLSA topic vectors

 Aggregate photos according to the distribution of mixture 

topics and rank photos for each representative area



Contributions

 Detect canonical photos of a specific 
object on each place over the world

 Eg.)“noodle”: Chinese noodle in Asia, 
spaghetti in Europe

 Do not limit to only scene of specific places 
or landmarks. Any objects are our targets ! 

 The method is not very novel, but the 
objective of the work is very novel.

 Novel application for geotagged photo DB.



5. [Part 2] Results



Experimental Results

 “noodle”, “flower”, “castle”, “waterfall”, 
“beach”, “car”
 For each concept , collect about 2000 geo-tagged photos 

from Flickr distributed evenly in the world wide areas

 Quantitative evaluation for the 1st step
 Evaluation on our proposed method for extracting the most 

relevant photos

 Precision and Recall

 Color-histogram-based method for comparison

 Examples of regional representative 
photos



Quantitative Evaluation 
for 1st step 

Average recall : 73.0%



[Example of results] “noodle”



[Example of results] “noodle”

Many “ramen” photos in 
Japan

Taiwanese style noodles and spicy Thai noodles“spaghetti” photos in the European area



[Example of results] “flower”



[Example of results] “flower”

Kansas State flower “Sunflower”Netherlands national flower “Tulip”



[Example of results] “waterfall”

“Powerful ” waterfalls 

in South America

“Beautiful” waterfalls

in Asia



Wedding cake !
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6. Conclusions



Conclusions

 In this paper, we pointed out that image 
sets associated with the same concepts 
are variable depending on locations

 To analysis that, we proposed to use 
geotagged photos on the Web. 

1. Entropy-based analysis 

• Image region entropy and geo-location entropy

2. A system to help detect “cultural 
differences” by selecting representative 
photos for each location 



Future work

 Use cross-language query to get 
images

 Actually the obtained results are biased by 
English-culture,  because we used only 
English words when gathering geotagged
images from Flickr.

 Discover (subtle) cultural differences 
automatically (hopefully hard for human)

 Extensive study on cultural differences 
using a large-scale geotagged photo DB
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Towards location(culture)-
specific image recognition  

 This analysis will help build location 
(culture)-specific object/scene 
recognition systems.

 For location-dependent concepts, specific 
training image sets are needed, while for 
global concepts global image sets are OK. 

• To build systems for Japanese people, 
a special training set for “Suishi” is needed.

• For people in Santorini,  specific image sets for 
“house” and “building” might be needed.
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Thank you

for your attention !



66



3. Methods


