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“Sushi” in Caltech 256
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‘Sushi’ in our own dataset
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m Collected in Japanese Keywords




Which do vou like to eat 7

EThese +wo sushl image sets are surelv %ﬁ

different, although both are image sets
assomafed wn‘h +he ‘sushi’ concep+ !
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‘Sushi’ over the world

= Image sets corresponding 1o the same concept
are changing depending on locations or cultures,



Questions about concepts and
locations (or culture)

= From this observation, representative
image sets associated with a given
concept might change (slightly)
depending on locations or cultures,

@ Questions?
m Which concepts are location-dependent ?

= Which concepts are global (unchanged)
over the world ? (eg 'sea, sky )

= How concepts change depending on
locations ?



“Sea :

global concept

The Aegean sea The Japanese sea



1. Objective,
Background
& Related work



Objective of this paper

m Analyze the relationship between word
concepts and locations
using geotagged photos on Flickr

m Consist of two parts:
1. Entropy-based analysis
2. A system to detect “cultural differences

They are relatively independent.



BacKkground: geotagged photos

= The number of geotagged photos on the
Web grows rapidlv: Flickr, panoramio

= Flickr has 100,000,000 geotagged photos.

(Feb. 2009)

flickYr OOOOOO
A “geo-tag”
represents the
o S coordinates
€. @ % (atitude,longitude)
AAAAAA é } of a location where

a photo are taken.

AAAAAAAAAA
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Related work: Geotagged image

Many work used geotags 1o organize
landmark phofos.

= Toyama et al. (2003)
m Jaffe et al. (2006)

= Simon et al. (2007)

= Kennedy et al. (2008)

------ and other many works.

The exception is IM2GPS" [Hayes et al. 2008

among works on geotagged photos using image analysis.



Related work: IMZGPS [Hayes et al. 08]

m Estimate the probability distribution over the
world by nearest neighbor search for large-
scale geotagged image DB,‘ (ignoring “concepits’)

m This work suggests there exists the relation
between visual features and geo-locations,



There are many non-landmark
geotagged photos in Flickr !




2. [Part 1]

Entropy-based analysis



Entropy-based analysis

Examine the relation between distributions
of visual features and geo-locations
for many concepts

1. Entropy-based measure of visual features
(Modified method of [Yanai and Barnard 05] )

2. Entropy-based measure of geo-locations
3. Analysis the relation between two Kinds of

entropy
m For 230 nouns



lmage region en'h"OpV [Yanai and Barnard 095]

m A measure of ‘visualness  of words (concepts)

= Represent the property of the distribution of
image region features

Biased / uneven: >, - Random/uniform:
low entropy - high entropy
having “visualness” o, o not having “visualness”

‘Low entropy means the concept has visual property,
"High entropy” means the concept has less visual
property.



LOW en','r‘opy: “scary" [Yanai and Barnard 05

Vhas

’ ;
non__sca

- ” Detected
Visual' concept “scary”

regions



High entropy: famous’
[Yanai.and Barnard 095]

non__famous

0.598 (1.000) ’ — ' ) 0.776 (1.000)
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non__famous

0.709 0.187 (1.000)

non__famous “"aup

0.754 0.595 0.422 0.319 (1.0

“Non-visual concept

00)

0.762 0.143 (1.000)



Modified image region entropy

= Follow ‘image region entropy” [Yanai et al. 05]

1. Use reglon based BOF ln.s'feaa’ of color. texture

Randomly-sampled
SIFT-based bag-of -

Iﬂl];ﬂ]ﬂuﬂ& features(BoF)
(1000-dim)

2. Use mi-SVM 1o select relevant regions

| For excluding
. background
=3 and noise regions

3. Model the distribution of region-based BoF
vectors with pLSA instead of GMM

4. Calculate entropy based on pLSA vectors
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Multiple Instance Setting

m Positive bags / Negative bags

@ Dbositive ins,
(foreground)

e 0
53
I e 0 I negative ins,
'$ ¢ (background)

i
7 - aars | § L; >,

- . e - -

T S

el ) . The rest of regions are
Positive instances of flower negative regions,

pseudo-training images random images
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mi-SVM  [Andrew et al. NIPS 03]

= Apply soft-margin SVM iteratively

m Training - classifying = training =
classifying = <+ (repeat 5 times)

During the iteration, the hyper-
plane is approaching the optimal
plane to discriminate positive
instances from negative ones.

® positive ins,

(foreground)
Py negative ins.

(background)




Distribution modeling with the 28

PLSA topic mixture o~ o

P( zld )Wr« wiz )
P(w,d)=P(d))_ p(w|2)P(z|d)
w: visual words, d: regions, z: topic

@ Apply PLSA for all the regions of all the
random (background) images in advance
= Obtain P(w | z) and ﬂx it (based dlS"'l‘lbUlon)

10,000 random Web |mages {Eui = - -

@ Estimate P(z | d) {each reglons wn‘h ﬂxed
P(w | 2) using fold-in heuristic [Hofmann 09]




Calculate image region entropy
m H(X): entropy of the given word X
H(X)=—) P(z|X)log, P(zx|X)

}G
1
P(z]|X) = TZP(,@ d¥)

m H(X) can be calculated
from each of 5 iterations of mi-SVM

= Regard the minimum H(X) during
5 iterations as the final entropy H(X)



Calculate geo-location entropy

1. Divide the world into 4 Kinds of grids
with every 10 degrees by shifting 5
degrees in terms of both latitude and longitude

2. Build histograms regarding the geotags
of the selected regions . ... ooy

3. Calc enh.'o.pv Hyeo( X) = Z b; log, b;
4. Select minimum one
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3. [Part 1] Results of

entropy-based
analysis



Experiments

m Data

s 230 nouns including various Kinds of words
- Gathered photos including the given nouns as their tags

= 500 geotagged photos at least/ each tag
from Flickr
(limiting 5 photos for each tag per user ID)

m After selecting relevant regions for each tag,
calculate the two entropy:
Image region entropy Huis(X)
Geo-location entropy Hgeo(X)

m Analyze relation between them



Image region entropy Hvis(X)

sun 3.6497 EE f;‘

rainbow |4.5538
moon  4.6686
mozart /7.8349
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Geo-entropy Hoeo(X)
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Image entropy vs. geo-entropy
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Sun, rainbow, moon

« Comcepts related 1o sky
— Image region entropy : low

— Geo-location entropy : high
They exists everywhere in the world,
and the apperances are similar,

Py
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image region entropy



= Geo-location entropy : low i '@

The geotags concentrates ¥ &
on specific areas. Their
appearances are various.
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fulip 'mace region entropy: low o
Geo-location entropy : med, §5Eda

- Variance of color did not reflect
on image region entropy, since we
use SIFT-based BoF representation,

- Holland and England are main areas.




Image region entropy: high
Geo-location entropy : high

dolphin

- Most of dolphins are taken in sea
or aquarium

 In seaside areas over the world




Image region entropy: high
Geo-location entropy : high
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4. [Part 2]

Discovering concept
differences in terms
of location



Image entropy vs. geo-entropy
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Utilize the set of geo-
tagged photos on Flickr

Objective of th

- A system 1o mine representative
photos for representative areas or

E= Aeagh

AAAAAAA

photos on Flickr N | Representative photos

1=V for typical regions
noise image removal



Motivation : Foods over the world

= So with such geotagged photos, we can
discover specific objects over the world.

v Do you kKnow all Kinds of famous 'noodles * in the
world?

v 'Ramen” and "Soba’ in Japan, "Thai noodle” in Thailand,

“Chinese noodles’,

As a result, we can discover cultural differences
on specific concepts over the world !

“clothes” , car’, "sushi’ <+«



Approach : three steps

1) Select relevant photos and remove noise
v Extract BoF vectors from all the images
v Visual clustering with k-means
v Select most relevant clusters based on the size of clusters

2) Detect representative regions
v Clustering based on geographic locations by k-means

3) Generate representative photo sets

for representative regions
v Generate the PLSA topic vectors

v Aggregate photos according to the distribution of mixture
topics and rank photos for each representative area



Contributions

m Detect canonical photos of a specific
object on each place over the world

m Eg) noodle : Chinese noodle in Asia,
spaghetti in Europe

m Do not limit 1o only scene of specific places
or landmarKks. Any objects are our targets !

= The method is not very novel, but the
objective of the workK is very novel.

= Novel application for geotagged photo DB,



5. [Part 2] Results



Experimental Results

m noodle’, flower , castle’, ‘waterfall

"beach”, "car

v" For each concept , collect about 2000 geo-tagged photos
from Flickr distributed evenly in the world wide areas

m Quantitative evaluation for the 1st step

v' Evaluation on our proposed method for extracting the most
relevant photos

v" Precision and Recall
v" Color-histogram-based method for comparison

= Examples of regional representative
photos



Quantitative Evaluation

fQE l st Sfﬂﬂ

Precision
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Average recall : 713.0%



[Example of results] "noodle”
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[Example of results]
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[Example of results]
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[Example of results] flower
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[Example of results]
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Wedding cake !

Figure 12: "Wedding cake™ in Mid US. Tall cakes are common.
This Is five-layered.
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Figure 13: "Wedding cake” in Europe. They are much shorter
and simpler than US,
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6 Conclusions



Conclusions

= In this paper, we pointed out that image
sets associated with the same concepts
are variable depending on locations

m To analysis that, we proposed 10 use
geotagged photos on the Web.

1. Entropy-based analysis
Image region entropy and geo-location entropy

2. A system to help detect “cultural
differences by selecting representative
photos for each location



Future work

m Use cross—language query 1o ge+
images
m Actually the obtained results are biased by
English-culture, because we used only
English words when gathering geotagged
images from Flickr,
m Discover (subtle) cultural differences
automatically (hopefully hard for human)

m Extensive study on cultural differences
using a large-scale geotagged photo DB

63



Towards location(culture)-
specific image recognition

= This analysis will help build location
(culture) - specific object/scene
recognition systems,

m For location-dependent concepts, specific
training image sets are needed, while for
global concepts global image sets are 0K,

- To build systems for Japanese people,
a special training set for “Suishi’ is needed.

- For people in Santorini, specific image sets for
"house” and “building” might be needed.



Thank you
for your attention!
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3. Methods



