Multiple Kernel Learningを用いた 食べ物画像の認識

電気通信大学 情報工学専攻 上東 太一, 甫足 創, 柳井 啓司 2009年7月21日MIRU

研究の背景

近年、健康管理への関心が高まってきている特に、『食事』に関する健康管理が注目されている

簡単に食事内容が記録できるシステムが望まれている

研究の目的

- 実用を目指した多種類(50種類)に対応した 食事画像の認識
 - 食べ物画像の認識

Multiple Kernel Learningによる多種特徴の統合

-システムのプロトタイプの作成 携帯カメラと添付メール

50種類もの大規模な食事分類は従来行われていない

関連研究

- 一般物体認識
 - Caltech101/256 ベンチーマークが有名
 - 様々なカテゴリーを含む. 動物, 人工物, 顔, マーク....
 - 多種類特徴の統合による手法が最高性能
 - Multiple Kernel Learning による統合 [Varma et al. 2007]
 - 101種類分類 89.6% 256種類分類 60.3%
 - 特定ジャンルのカテゴリ認識
 - ・ 互いに似ているので、より困難な問題.
 - Flower 102種類 72.8% [Nilsback et al. 2008]
 - MKLによる統合 Caltech-101 に比べて, 16.8%精度低下
 - シーン分類 15種類 81.5% [Lazebnik et al. 2006]
 - 室内シーン分類 67種類 25% [Quattoni et al. 2009]

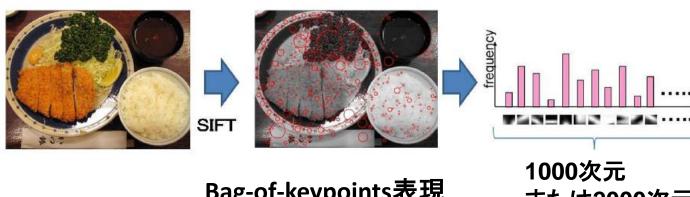
画像認識方法

Multiple Kernel Learning(MKL) [Lanckrietら,2004]
を用いた特徴統合によるマルチクラス分類手法

- 統合する画像特徴
 - 局所特徴のBag-of-Keypoints(6通り)
 - カラーヒストグラム
 - ガボール特徴のヒストグラム(2通り)

局所特徵

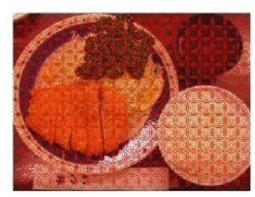
- SIFTを使用
- ・特徴点検出は3タイプ
- 画像はBag-of-keypoints表現を 用いて局所特徴の出現頻度の ヒストグラムで表現
 - 1000次元と2000次元で表現



Bag-of-keypoints表現

または2000次元

DoG検出

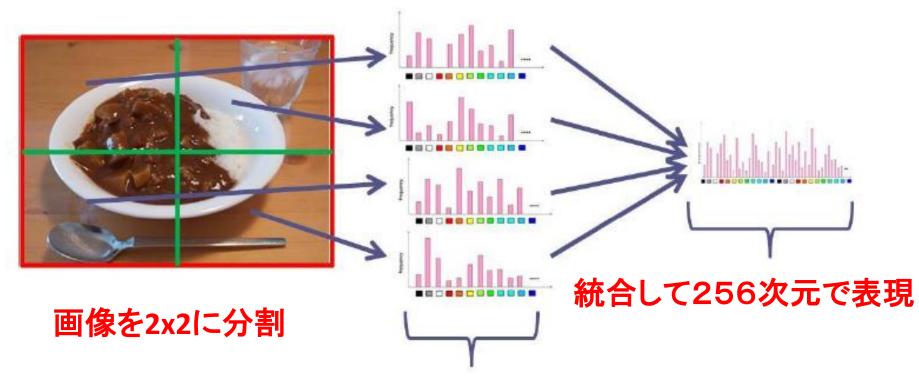


グリッド検出

ランダム検出

カラーヒストグラム

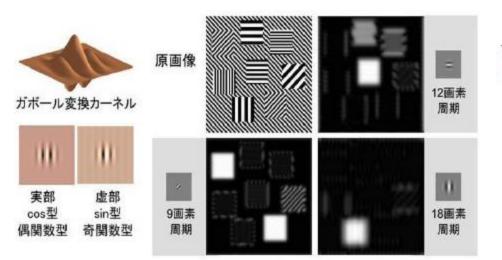
• RGB色空間を使用

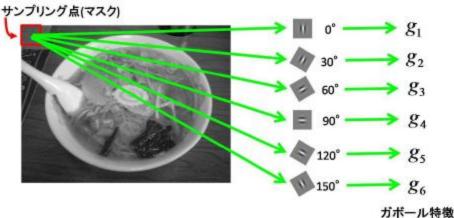


色空間を64色に量子化

ガボール特徴

- 画像化から局所的な濃淡情報の周期と方向 を表現した特徴
- 6方向、4周期のガボールフィルタで特徴抽出
- 色特徴と同様に画像を3x3と4x4に分割
 - 216次元と384次元のベクトルで表現





マルチクラス分類

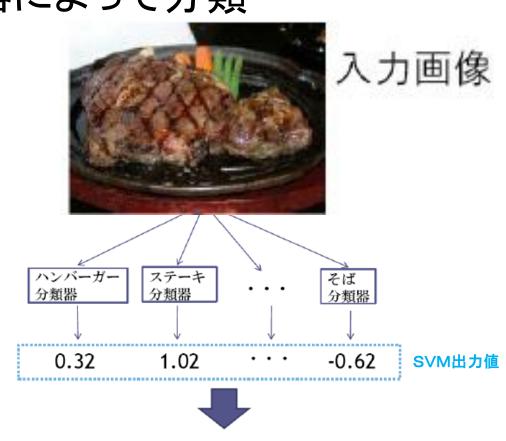
1-vs-rest SVM分類器によって分類

学習

あるクラスを正例とし その他のクラスを負例として 一つのクラスの分類を学習 それを、全クラスで学習

分類

学習したすべての分類器に テストデータを入力して、 出力値の最も大きかった クラスに分類



出力値の最も大きいクラスに分類

Multiple Kernel Learningによる特徴統合

- 本研究では複数のSVMのカーネルを線形結合 することにより特徴を統合する
- Multiple Kernel Learning 問題[Lanckrietら,2004]

$$K_{combined}(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^{K} \beta_j k_j(\mathbf{x}, \mathbf{x}')$$
 with $\beta_j \ge 0$, $\sum_{j=1}^{K} \beta_j = 1$.

- -最適な重みパラメータ β_j を求める
- 凸面最適化問題として解く
- MKL-SVMを用いる
 - SVMフレームワークで最適化問題を解く [Sonnenburgら,2006]

Multiple Kernel Learning(MKL)

- 複数のカーネルに対し、最適な重みを学習する 手法
- 画像認識では、特徴統合の手法として利用可能.
 - Varmaら(2007)はcaltech101/256で最も良い結果を出している

各サブカーネルをそれぞれの特徴と対応させ、 特徴統合に用いる

色特徴のカーネル テクスチャ特徴のカーネル ・・・・・

$$\mathbf{k}(\mathbf{x}_i,\mathbf{x}_j) = \sum_{k=1}^K eta_k \mathbf{k}_k(\mathbf{x}_i,\mathbf{x}_j)$$
最終的なカーネル 特徴別のカーネル

MKLのアルゴリズム

単一カーネルのSVM学習の反復による解法[Sonnenburg,2006]

- 1. 最初に、重み β_j を均等にする
- 2. β_j を固定し、統合カーネルを単一カーネルとみなし、通常のSVM学習を行い $\alpha_i(i=1..N), b$ を求める
- 3. 求めた α_i を固定して、 $\sum_{k=1}^K \beta_k S_k(\alpha)$ が増加するように β_j を微小に変化させる
- 4. 終了条件に達するまで(2)-(3)を繰り返す

評価実験

- データセット:50種類食べ物画像セット
- 画像特徴: 3タイプの画像特徴(計9種類)
- 手法: 各特徴単独のSVM全特徴によるMKL-SVM
 - MKLの実装は機械学習ライブラリ SHOGUNを利用
- $\mathbf{J} \mathbf{\lambda} \mathbf{L} : \chi^2 \mathbf{J} \mathbf{\lambda} \mathbf{L}$ $K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{2\sigma^2} \sum_i \frac{\|x_i y_i\|^2}{x_i + y_i}\right) \gamma$
 - -スケールパラメータ γ の設定方法
 - ①Cross-validationにより、最適な値を探索
 - ②すべての学習データ間の χ^2 距離の平均の逆数 [Zhang, 2007]

50種類データベースのサンプル

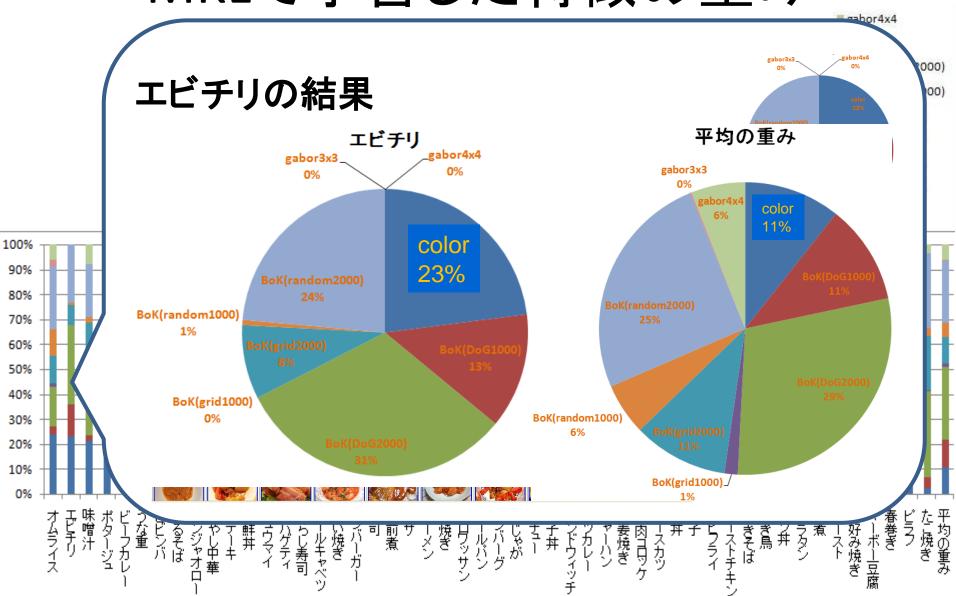
各種類100枚ずつ 計5000枚

実験結果

MKLによる特徴統合方法 と 特徴単独で用いた手法 の50種類の平均分類率

特徴	平均分類率
BoK(dog1000)	26.52%
, ,	
BoK(dog1000)	27.48%
BoK(grid1000)	26.10%
BoK(grid2000)	27.68%
BoK(random1000)	28.42%
BoK(random2000)	29.70%
gabor3x3	31.28%
gabor4x4	34.64%
Color	38.18%
MKL(cross-validation)	53.16%
MKL(mean-x2 distance)	61.34%

MKLで学習した特徴の重み



実験結果:混合行列

MKL(mean- χ^2 distance)

チャーハン

ピラフ

実験結果

許容クラス数を変化させたときの平均分類率の変化

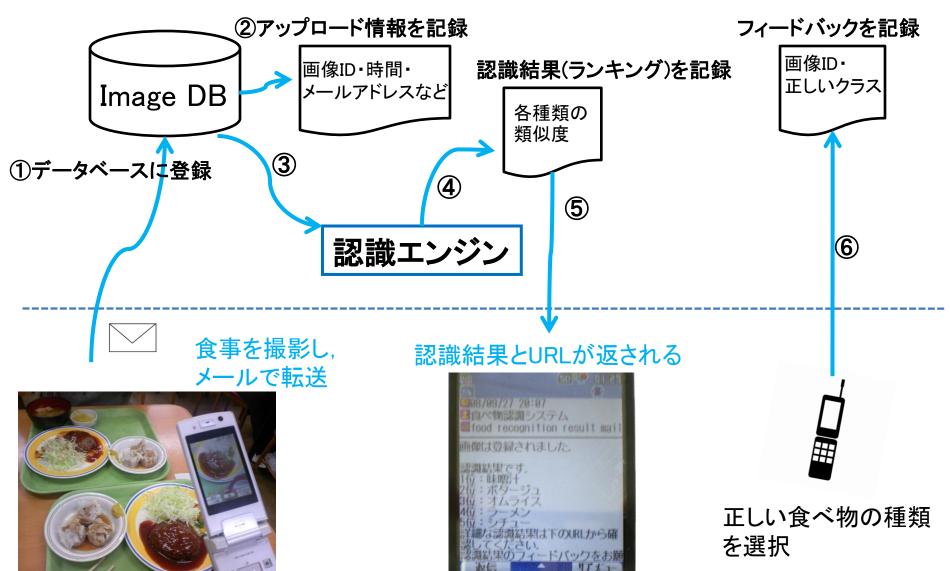
ランキング

85種類の認識

- ・現在50種類から85種類に拡張実験中
 - 厚生労働省の「食事バランスガイド」より追加
 - 手法は50種類と同じ

ランキング	85種類DB	50種類DB
1位まで	57%	61%
3位まで	76%	81%
5位まで	83%	88%

システムのプロトタイプの作成: 携帯版認識システムの構成



システムの評価

- ・約13ヶ月間試験的に運用
 - 300枚がアップロードされた
- ・ システムの認識精度:
 - -1^{st} 38.3%, 3rd 58.3%, 5th 64.0%

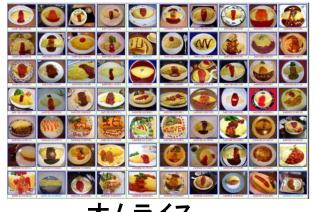
うまく認識された写真の例

うまく認識されなかった写真の例

まとめ

- ・ 食べ物画像から料理を認識する手法を提案
 - 50種類で平均分類率61. 34%を達成
 - 上位3位までの分類を許可すると80%を超える
- ・ 13ヵ月間運用した携帯システムの認識精度
 - 1位まで38.3%, 3位まで58.3%

認識結果



オムライス

ざるそば

チャーハン

今後の課題

- ・カロリー計算のための食事の「量」の認識
 - おおよそのカロリーを自動計算可能にする
 - 箸など基準となる物体とのサイズの比較
- 認識精度向上
 - 現在使用している特徴とは異なる識別能力を持つ 新たな特徴量の追加
 - 皿の検出などの食事画像専用の処理の追加
- 食事カテゴリーの検討
 - ・ 階層的な分類
 - 例) パスタ -> ミートソース, カルボナーラ, ペペロンチーノ