Folksonomyによる 階層構造画像データベースの 構築

CVIM研究会 電気通信大学 情報工学専攻 柳井研究室 秋間 雄太 2010年3月19日

背景

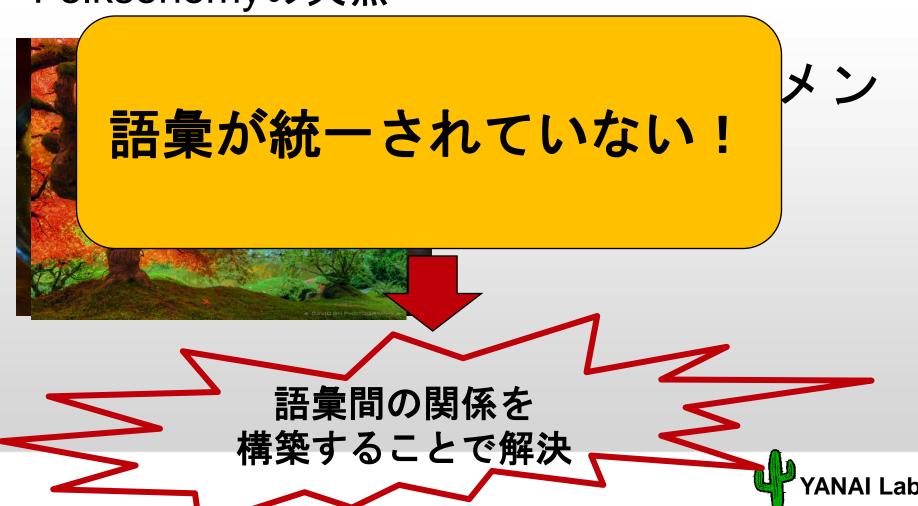
■Folksonomyとは?

コンテンツ

一般ユーザが自由に タグ付けを行うことで ユーザ自身が扱いやすい データセットが構築される

背景

■Folksonomyの欠点



背景

Folksonomyに基づいた画像データセットFlickr

• タグなどによって意味的な価値を画像に付与

しかし,

- 基本的に付与されているタグは単なる単語の羅列
- 概念間の関係を加味したものではない

視覚情報を含んだオントロジーが作成できれば,より詳細な画像検索などが可能になる

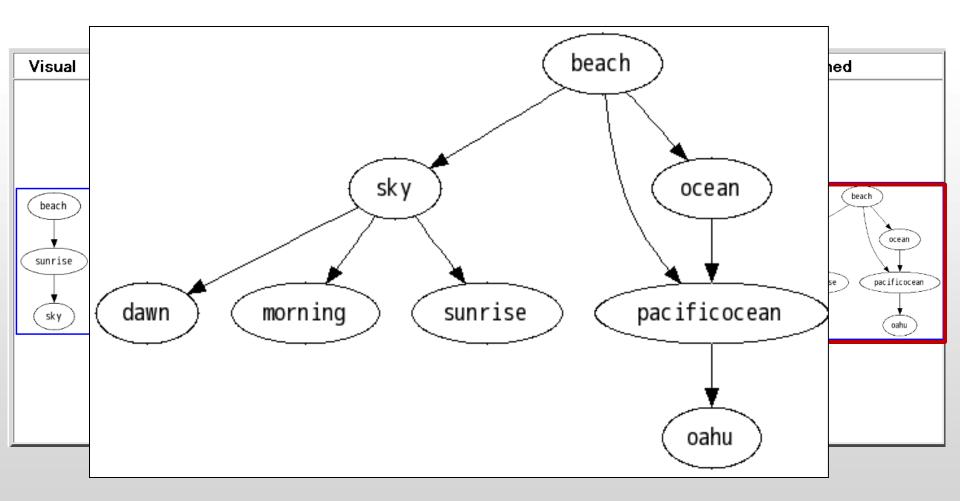
オントロジーとは

- ■単なる画像検索から意味情報を考慮した検索へ
 - sandやbeachとしかタグが付いていない画像をseaやskyでも検索可能に

目的

- ■本研究の目的
 - 階層構造を持った画像データベースの構築
 - 200万枚の画像からなる大規模画像データセットを用いる
 - 視覚による表現、タグによる表現、視覚とタグを統合した 表現の3種類で構築
 - 意味的にあるいは視覚的に分布の広い概念ほど上位の概念 であると仮定して上位下位関係を推定

得られる階層構造の例



階層構造自動構築の利点

- ■画像検索の補助として利用可能
 - 作成された構造から検索の興味を広げる
 - 検索による画像の絞り込み
 - 画像検索ワードの対応しない画像にもヒット
 - ヒット数の少ない検索ワードでも豊富な画像を表示
 - タグの付いていない画像の検索
- ■画像認識や画像アノテーションへの利用
 - 構築する画像オントロジーは各概念に対応する画像 の平均的な画像特徴量の分布情報を保持

関連研究

- WordNet
 - 概念間の意味関係を様
 - 上位下位関
 - 画像検索シ 視覚情報による
 - 固有
- ■視覚渉が
 - Tang IJCAI
 - Plangpras [Plangpras

視覚情報による 自動的に作成された 階層構造を オントロジーとするような 研究は存在しない ang et al

ok et al ACM WWW Conf2009]

の既存の関係を利用

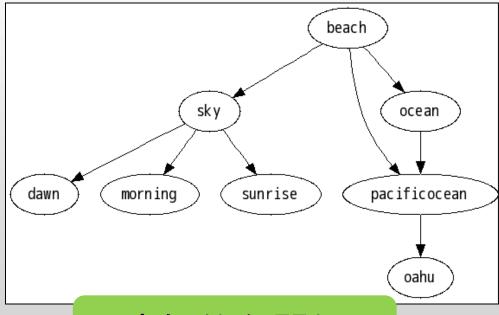
WordNetとの比較例

WordNetの階層の例

sand silicon Si atomic number 14

専門的な要素が強い

本実験で作成される 階層の例



直観的な関係

階層構造構築の手順

大量画像取得と 特徴抽出

- Flickrからおよそ200万枚のタグ付き画像を取得
- ・ 画像特徴とタグ共起を用いた3種類の方法で画像を表現

ノイズ画像除去

• pLSAを用いてノイズ画像を除去

概念ベクトルの作成

• 各概念を表現するトピックベクトルを生成

概念間距離の 測定

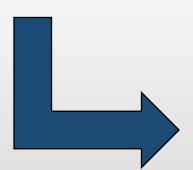
- 概念ベクトルから各概念間の距離を測定
- 距離によって関係する概念を取得

概念間階層 構造の構築

- 概念ベクトルからエントロピーを算出
- エントロピーの大小で上下関係を決定

Flickr APIでの画像取得について

ランダムに 200万枚分の 画像情報を取得



タグ

- bird
- •goose
- •swanny
- •Bali Bird Park

取得できる画像例

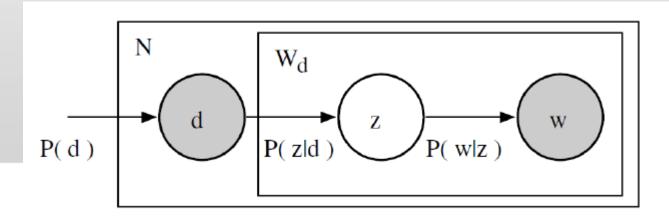
タグ付き画像表現ベクトルの種類

- ■視覚特徴による表現
 - Bag-of-Keypoints表現
 - ベクトル次元:1000
- ■タグ共起による表現
 - Bag-of-Words表現(Bag-of-Tags表現)
 - ベクトル次元: 4345
- ■視覚特徴とタグ特徴を統合した表現
 - それぞれの表現のpLSAトピックベクトルの結合
 - ベクトル次元:200

probabilistic Latent Semantic Analysis

- ■確率的なクラスタリング手法
 - Wordベクトル,Bag-of-Keypointsどちらも適応可能
 - 確率的分類が最適になるような, 画像 d, word w, トピック z間の関係を算出

$$P(d_i, w_j) = \sum_{k=1}^{K} P(d_i|z_k) P(w_j|z_k) P(z_k)$$



Fold-in heuristics

200万枚全てでpLSAは困難

大規模なデータセット

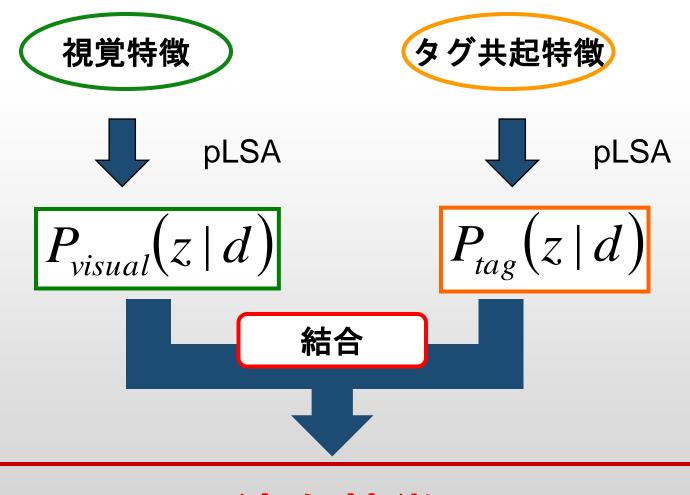
小分けにしたデータセット

特定のパラメータ (全体パラメータ と同一と仮定)

推定パラメータ

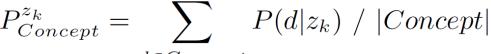
推定パラメータを 用いてpLSAの計算

タグ特徴と視覚特徴の統合



統合特徵

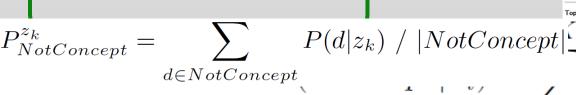
ノイズ画像除去



$$P(Concept|z_k) = \frac{P_{Concept}^{z_k}}{P_{Concept}^{z_k} + P_{NotConcept}^{z_k}}$$

トピックのConceptらしさの 度合い

Not moon dataset



Topic No.31 0.0115582596

Topic No.32 0.0063095228

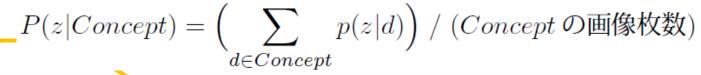
Topic No.33 0.0239038816

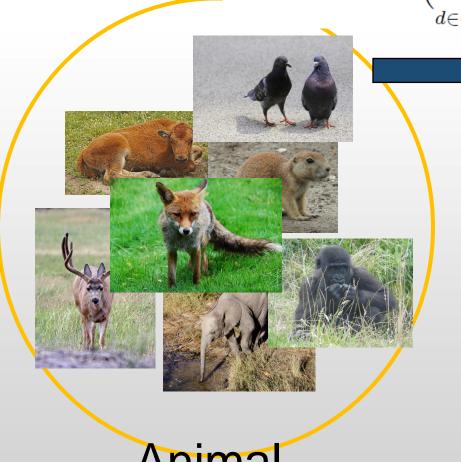
既念に所属しめすいよって画像に重みらす。

Topic No.39 0.004678281

$$P(Concept|z_k)P(z_k|d_i)$$

概念ベクトルの生成





Animal 概念ベクトル

Anima

概念間関係

- ■概念間距離
 - JSダイバージェンスを利用
 - P, Q はそれぞれの概念の確率分布(ベクトル表現)

$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

$$D_{JS}(P||Q) = \frac{D_{KL}(P||(P/2 + Q/2))}{2} + \frac{D_{KL}(Q||(Q/2 + P/2))}{2}$$

- 距離が近い: 概念同士が密接に関係
- 距離が遠い: 概念同士の関係性がうすい

概念間関係

■概念間の上下関係

$$H(Concept) = -\sum_{z \in Z} P(z|Concept) \log(P(z|Concept))$$

上位概念(ばらつき大)

エントロピー大

下位概念(ばらつき小)

エントロピー小

Animal

Bird

階層構造の構築方法

■非巡回有向グラフ(Directed Acyclic Graph,

DAG)による表現 1. 起点となる概念を決める 2. 距離の近い概念を算出する vehicle 3. エントロピーの大小によって 上位下位関係を決定 4. 1-3を繰り返し ford truck chevy firetruck ambulance mercedes ferrari racing chevrolet

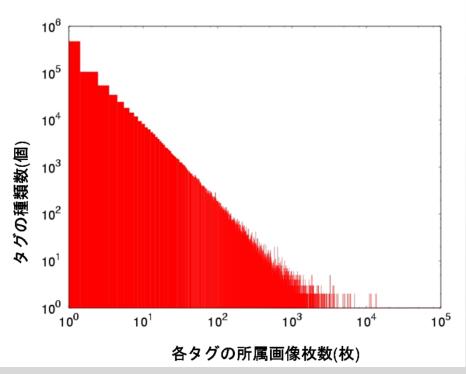


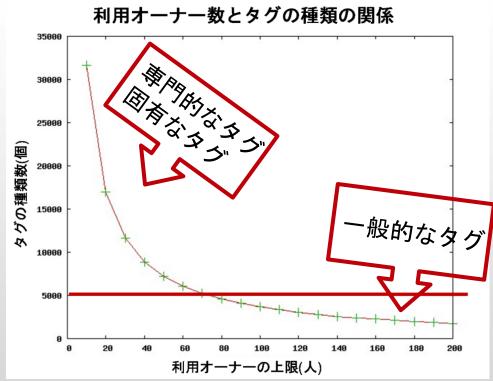
実験について

- ■Flickrによる大規模画像データセット
 - 合計およそ**200万枚**のタグ付き画像
 - 非巡回有向グラフを作成する概念は計2657個
- ■各設定
 - ノイズ除去によって、各概念の上位n枚は $5 \times \sqrt{(各概念の取得枚数)}$ を用いて計算する
 - これは画像枚数が少ない概念(200枚程度)でも およそ100枚の画像を利用できるように設定

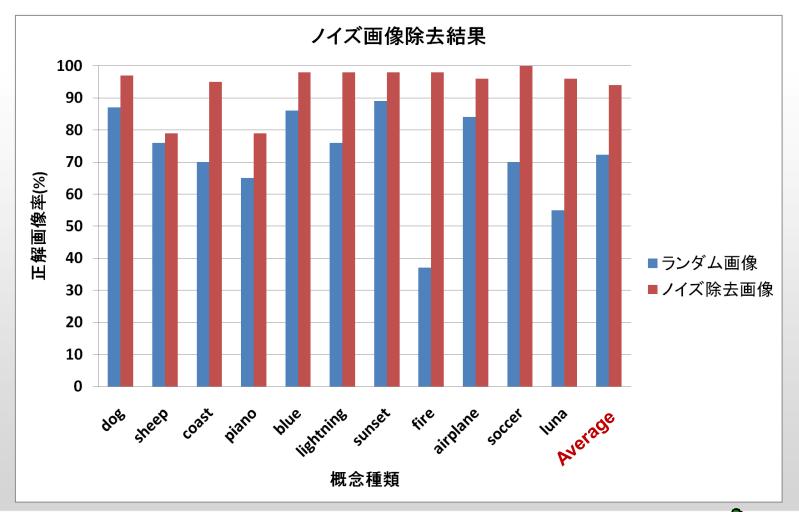
実験データセットの傾向

所属枚数ごとのタグ種類数





ノイズ画像除去の評価



ノイズ画像除去例 (fire)

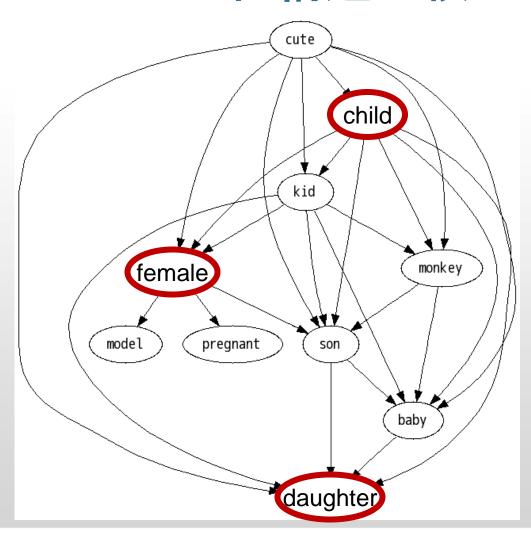


Lab.

階層構造の例

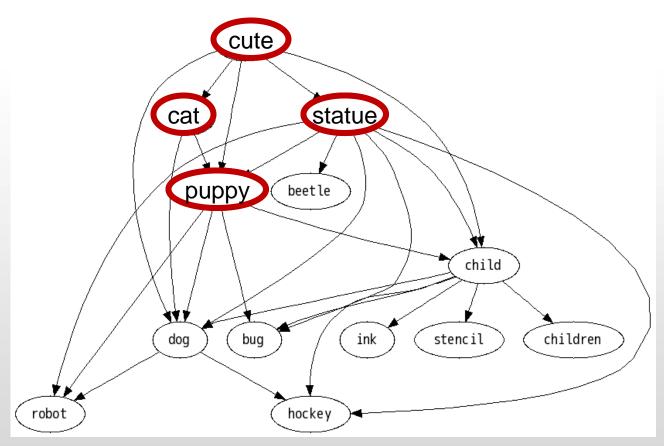
- ■実際に作成した階層構造
 - http://mm.cs.uec.ac.jp/akima/flickr_dag/

cuteの下位構造比較



タグ表現による 階層構造

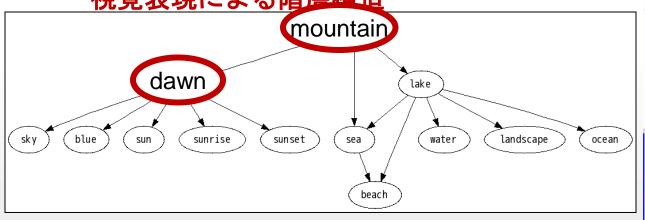
cuteの下位構造比較

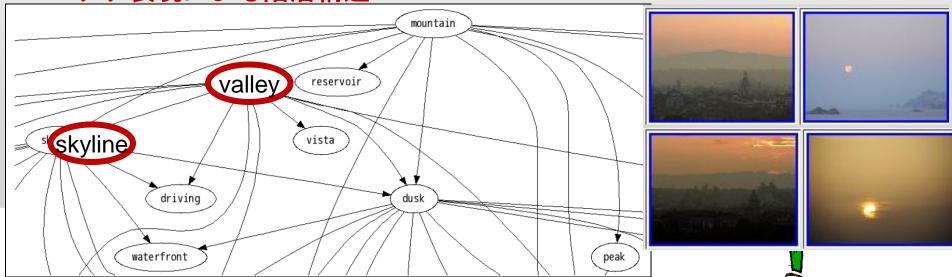


視覚表現による 階層構造

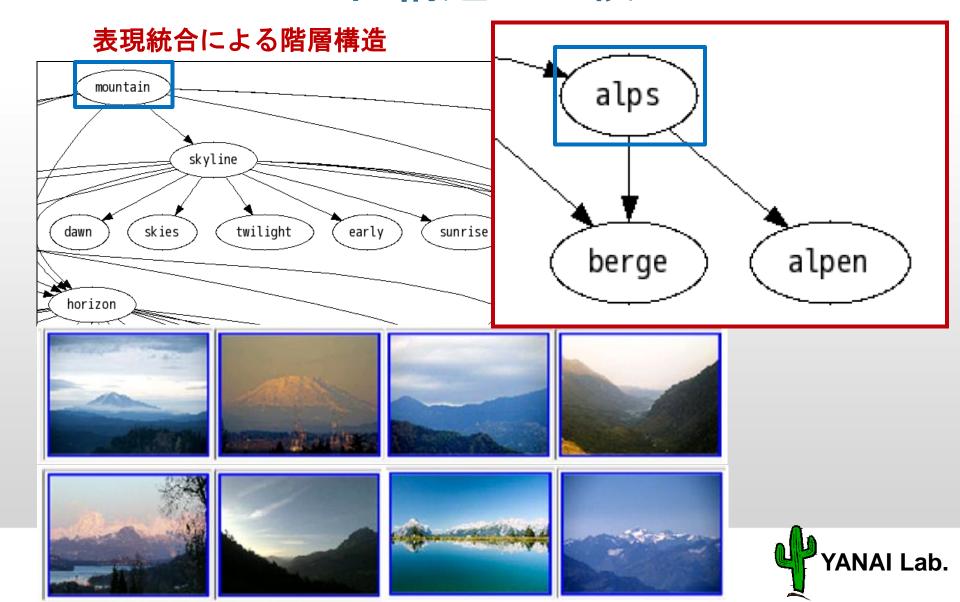
mountainの下位構造の比較

視覚表現による階層構造



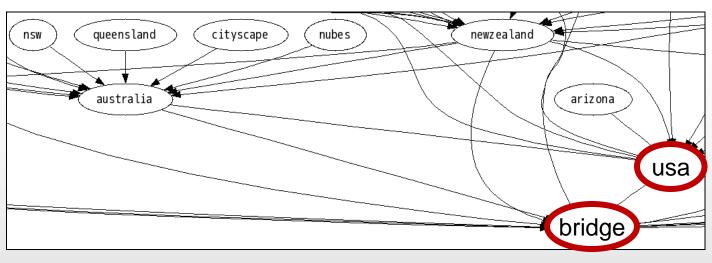


mountainの下位構造の比較



bridgeの上位構造の比較

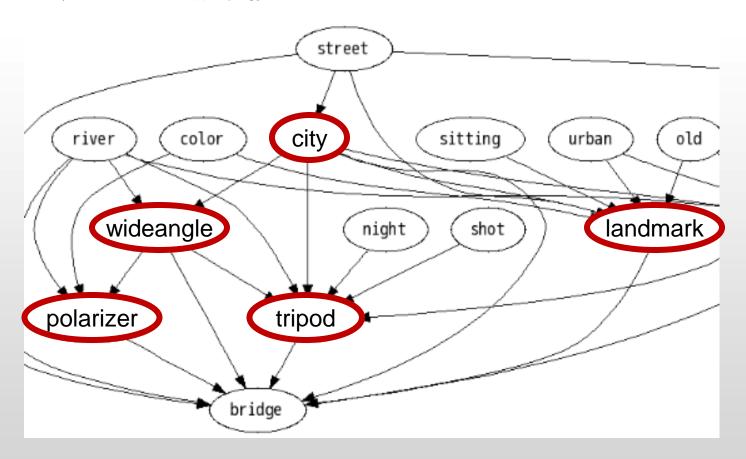
視覚表現による階層構造



YANAI Lab.

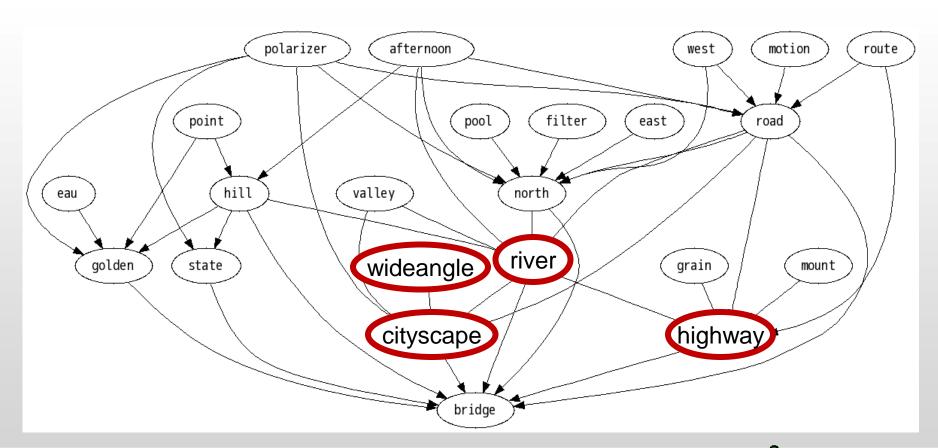
bridgeの上位構造の比較

タグ表現による階層構造



bridgeの上位構造の比較

統合表現による階層構造



階層構造比較の考察

- ■概念の表現方法ごとの違い
 - 視覚表現: 視覚的に類似性のある関係性
 - データベース特有あるいは人間の知り得ない新しい関係性を 抽出できる可能性がある
 - タグ表現: 意味的に関連する言葉としての関係に近い
 - 人間の認識に近い関係を抽出できる可能性がある
 - 統合表現: 両方を足し合わせたような関係で 画像検索に利用できる可能性が高い

まとめ

- ■作成した階層構造に関して
 - 言葉の意味と視覚的類似性を考慮した関係を抽出
 - データセットの傾向の考察に有効
 - 表現方法の違いで多様な形を表す
 - 検索システムなどの応用の可能性を発見

今後の課題

- ■現在は形状のみなので、色などその他の特徴も 組み込む
- ■概念のばらつきを維持したままのノイズ除去
- ■関係性の種類の認識を行えるようにする
- ■各概念の画像校数をより豊富に 現在はラン宮台に200万枚取得したため、 枚数の少な修飾部が存在
- ■数値的な評価をおこなう
 - 画像検索の補助などに利用できれば可能

ご清聴ありがとうございました

