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Background

« Spread of wearable camera
— Easy to take egocentric video

« New application of egocentric videos
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Automatic generation of route guidance video
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Objective

Generate walking route guidance
by summarizing egocentric moving videos
Raw Video taken by wearable camera
-Too long to watch =Boring

Our System

e summarizing

Route Guide Video
- Easy to understand walking route -Very helpful




Demo (Raw Video)
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Demo (Result Video)
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Related Work: Summarization

egocentric video

 Tancharoen et al. [ACM SIGMM 2005]
— Cues: GPS and other sensors
— Target: Life-log video ( everyday life )
— Output: Set of important frames

 Lee etal. [CVPR 2012]
— Cues: Visual features
— Target & Output: same as the above

 QOurs i

— Cues: Visual information
— Target: Walking video
— Output: Summarized video
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Overview

1. Ego-motion classification

2. Crosswalk detection

3. Estimation of importance

4. Calculation of playing speed

(© 2013 UEC Tokyo.



~
UEC 'The University of Electro-Communications

1. Ego-motion Classification

 Classify video sections into four classes
@ Moving forward
@ Stopping
@ Turning right
@ Turning left

Video section is four seconds long
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1. Ego-motion Classification

 Extract 48 frames from one video section

« Calculate a feature vector
(1D Compute optical flows for 47 intervals
(@ Build 18-bin directional histograms for 4x4 grids
@ Normalize them within a video section
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1. Ego-motion Classification

 Train 4 SVM classifiers in one-vs-all
— Prepare hand-labeled training data

« Use pseudo-probabillity values
— To estimate section importance

Moving forward
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U U Stopping

Turning right

Turning left
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2. Crosswalk Detection

Crosswalk is important and remarkable cue

« Extract three frames every second

« Estimate ground regions
— Use Geometric context (Hoiem et al. [IJCV Vol.75 2007])
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2. Crosswalk Detection

« Extract SIFT feature from ground regions
 Make BoF vector with extracted SIFT

* Use non-linear SVM as classifier
— about 240 learning frames |
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3. Estimation of Importance

* Expression of estimation importance

Si = Cpvp + CsUgi] + CrUp + CU )

Weighting factors

Stop Turning | Turning
forward rlght left

Cf__
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3. Estimation of Importance

* Normalize importance

* Regard crosswalk section
— Total output is over pre-defined threshold

 Add bias to crosswalk section

§"; = min(S’; + 0.5,1.0)
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4. Calculation of Playing Speed

« Calculation play speed from importance

, 1
spli] = + 1

5" (1 — (1/(Spmax))) + (1/(SPmax — 1))

* SPmax IS given by user when playing
— User can adjust max playing speed on-line

« Smoothing playing speed (for easy watching)
sp'li] = 0.1(spli — 1] + spli + 1]) + 0.8 sp[i]
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Viewing System

* Implemented view system in HTML5

— Be embed classifier outputs and numbers of detection
of each video section

Sample Video
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Experiments

 Dataset
— Taken at around our university (Tokyo)
— 9 Videos (average 9min long)

« Evaluation experiments
— Ego-motion classification
— Crosswalk Detection

» User study
— Vote best summarization method by users
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Evaluation of Ego-motion
Classification

Ego-motion classification recall-precision curve

1.0

0.8}

= 0.6
k=)
n
O
&
04 ................................................................................................................
—  Move forward
0_2_ L Stop ..........................................................................
— Turn right
——  Turn left

0'%0 0.2 0.4 0.6 0.8 1.0
Recall

Classification rate ((TP+TF) /N ) =83.8 %
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Evaluation of Crosswalk Detection

* Experiment Setup
— 250 learning frames from four videos
— 200 testing frames from five videos

« Compare w/ and w/o ground estimation
— To evaluate the ground region estimation
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Evaluation of Crosswalk Detection

- Recall Precision |f-number

w/ ground 0.37 0.787 0.503

estimation

w/0 ground 0.26 0.839 0.397

estimation

Improvement of F-number 0.106
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User Study Setup

Comparing methods as follows:

(@ Proposed (Ego-motion + Crosswalk)
(2 Ego-motion classification only

3 Fast-forwarding at a uniform speed
4 Storyboard-style

Ask 10 subjects to evaluate the results for
three videos by above
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User Study Result

* Most of the subjects voted to proposed method

Video Ego- Ego. + Fast- Storyboard
motion crosswalk forwarding

Video A 4 6 0 0

Video B 3 6 ] 0

Video C ] / ] ]

Total 8 19 2 ]
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Conclusion

« Summarization of egocentric moving videos
for generating route guide videos

* Experiment result
— Achieve 83.8% In ego-motion classification
— Ground estimation improve crosswalk detection

« User study
— Most subject voted proposed method
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Future Works

« Extending target videos

— Focused on only walking videos now
— Bike and car egocentric videos

* Adding important objects
— Use other object cues for deferent situation
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Ccontacts

* Masaya Okamoto
» e-mail: okamoto-m@mm.inf.uec.ac.jp

Graclas!
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VS Google Street Views

« Taken from high view point
 Limited to large cities

|

1.

Ours Street Views
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Expression of Playing Speed

« Calculation play speed from importance

1
spli] = + 1

5" (1 — (1/(Spmax))) + (1/(SPmax — 1))

* Smax IS given by user when playing
— User can adjust max playing speed on-line
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Target Video

We assume our target videos are§

(1 Walking video recorded from a starting
place to a destination

2 Recorded by a moving wearable
camera

@3 Recorded continuously (not
interrupted)
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Optical Flows
from Moving ODbject

* Optical flows from moving object (ex. Car)
cause fallure of ego motlon cIaSS|f|cat|on

classified as rlght
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Calculation of Optical

* We use improved LK module in OpenCV

* For high accuracy
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Detall Setup of User study

* Use 3 videos for User study
» Taken by me at residential area Tokyo

Video |[Duration |After Average |Storyboard
duration speed size

deo A 147 1:45
Video B 9:17 2:20 3.9 28
Video C 11:26 2:40 4.3 32
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Learning of weight factors

* Decided by preliminary experiments

* We will decide several parameters from
training data

— Need supervised signals in each video
section
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Why not a multi-class classifier

« Some section contains complex motion
— Two motions in one section, looking aside

* One-vs-all classifiers can represent
complex motion
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Evaluation of Crosswalk Detection

Recall-precision curves

Crosswalk detection recall-precision curve
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2. Crosswalk Detection

« Extract SIFT feature from ground regions
 Make BoF vector with extracted SIFT

* Use non-linear SVM as classifier
— about 240 learning frames |
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Our dataset

* Collected videos contain somebody faces and
car numbers

o |t's difficult to distribute
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