Offline 1000-Class Classification on a Smartphone

Yoshiyuki Kawano and Keiji Yanai
Department of Informatics,
The University of Electro-Communications,
Tokyo, JAPAN
Background

• Rapid progress of smartphone
 – Obtain enough computational power for image recognition.
 – But, rapid mobile recognition is still a challenging task.

• Large-scale object recognition
 – 1000 class (ex. ILSVRC)
 – More practical system
 – But, smartphone’s memory is limited
Objective

Mobile Recognition System
• recognize many kinds of object
• require no communication with a server
 – Recognition on a smartphone
• Offline recognition system
 – Real-time image recognition
Offline vs. Online

• **Advantage** 😊
 - Able to use anywhere
 - Real-time recognition thanks to *no communication* overhead
 - Not required the server

• **Disadvantage** 😞
 - Computational power and memory size
 - Electricity consumption

© 2014 UEC Tokyo.
Related Work

- **Google Goggles**
 - Specific object Rec
 - Similar image search
 - OCR

- **Leaf snap (Kumar et al, ECCV’12)**
 - Identifying *plant species*
Image Recognition

• Image Features:
 – Color Patch FV (only mean)
 • 24 dim local color descriptor
 – RootHOG Patch FV (only mean)
 • 32 dim local RootHOG descriptor
 • Similar to RootSIFT
 – SPM
 • Level 1 (1x1+2x2)
 – FeatureSize
 • Color FV: 7680dim, RootHOG FV: 10240dim
Classifier

- Linear Classifier:
 - AROW
 - Online classifier
 - one-vs-rest

Independent of the number of samples

computation: $O(N)$

memory: $O(N)$

- Weight vectors
 - compressed by scalar-based quantization
Recognition Step

We use light weight features and quantized weight.

Processing over 4 cores in parallel

Takes only 0.27 seconds
Performance

• Top-5 classification rate on ILSVRC

<table>
<thead>
<tr>
<th></th>
<th>uncompressed</th>
<th>compressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>48.7%</td>
<td>47.9%</td>
</tr>
<tr>
<td>Memory</td>
<td>71.7MB</td>
<td>9.0MB</td>
</tr>
</tbody>
</table>

• Only slight performance loss
 – About 1%
Implementation

- 4 core processing
 - Extract descriptors
 - Feature coding
 - Classifies
- Offline processing
 - Recognition time: 0.27 second
 - 1.6GHz Quad Core (Galaxy Note 2)
Mouse -> cup -> desktop -> web
siamang, gollira, chimpanzee
siamang -> gollira -> chimpanzee