OBJECT CATEGORIZATION BY LOCAL FEATURE MATCHING WITH A LARGE NUMBER OF WEB IMAGES

> Mizuki Akiyama, Yoshiyuki Kawano, Keiji Yanai Department of Informatics The University of Electroo-Communication, Tokyo, JAPAN

Background

Object Recognition

Generic object recognition - object, scene, face, ···

Specific object recognition - DB search, name search

TIGER

Background

Object Recognition

Generic object recognition - object, scene, face, ···

Generic Object Recognition

Specific object recognition - DB search, name search

Specific Object Recognition

Background

Specific Object Recognition

- Large-scale Image database + local feature matching
- High precision for recognition of specific-shaped objects
- Generic Object Recognition
 - Small-scale images database + machine learning
 - Low precision due to inter-class ambiguity
- Specific object recognition applies to generic object recognition.

Goal

Generic object recognition

- Local feature matching based specific object recognition
- Large-scale training and categorization
 - 150,000 training images

Related Work

Object recognition using a large amount of images

- Specific object recognition method to landmark database creation[Zheng et al, ICCV2009].
- 20 million geo-tagged images on the Web
 - Search a very similar image
- SIFT-matching based image search

Related Work

- Generic object recognition using a large amount of image data
 - 80 million images [A. Torralba et al., PAMI (2008)]
 - Image categorization by k-NN with 32x32 tiny images
 - Comparable performance to the state-of-the-art method
 - K-NN method with a very large amount of image data was one of promising approaches for generic object recognition.

Related Work

- Our work is inspired by the "80 million images"
- 80 million images
 - Use the sum of squared differences (SAD) between 32x32 tiny images
- Our work:
 - Apply SIFT-based local feature matching and voting
 - Collect a large number of images from the Web
 - Use them for experiments on image categorization without excluding noise images

Overview

Image collection

- 25 categories, total 150,000
- Source: Google, Yahoo!, Flickr
- noise images included

- Feature extraction
 - SIFT
 - 128 dimension, invariant to rotation, scale-change and illumination change
 - PCA-SIFT
 - 36 dimension, extension of SIFT
 - Bag-of-Features (BoF)
 - Many local patches, and vector-quantizing
 - Explore the best setting of the codebook size k

- Database
 - kd-tree
 - SIFT, PCA-SIFT
 - Inverted index
 - BoF

- Feature matching
 - Simple NN search is very costly
 - Approximate Nearest Neighbor(ANN)
 - Kd-tree based approximate nearest neighbor search method
 - Search the top n nearest points for each query local feature point
 - Vote on the image from which the nearest local features are extracted

Recognition

- Sort the image having votes in the descending order of the number of votes
- Decide one of the given categories by applying k-Nearest Neighbor classification
- k-Nearest Neighbor
 - Majority of the categories of the top k samples

Experiments

5 and 25 class categorization

Feature representation

- SIFT,PCA-SIFT,BoF
- parameters
 - ANN top n and k-NN top k
 - Codebook size

Dataset

- 5 and 25 categories Dataset
 - Examples of images

Experiments

The number of training images

32GB linux machine

	# of training images	# of images per class	# of local features	memory					
SIFT	26,250	1,050	15million	20GB					
PCA-SIFT	73,500	2,940	53.50million	25GB					
BoF	145,000	5,800	-	5GB					

Evaluation

- Recall, precision, classification rate
- Baseline: Bag-of-Features + SVM

Experimental Results

	5 class Classification rate(%)	25 class Classification rate(%)
SIFT(n=5,k=7,000) Proposed	60.1	32.5
PCA(n=5,k=7,000) Proposed	57.2	29.8
BoF(size=200,000,k=20,000) Proposed	54.9	30.7
BoF+SVM(linear kernel) Baseline	51.7	17.1
BoF+SVM(χ [^] 2 kernel) Baseline	66.9	36.2

Experimental Results(SIFT,PCA,5class)

kNN (top-k)

Experimental Results(SIFT,PCA,25class)

Experimental Results(BoF,5class)

5 class classification (BoF)

kNN (top-k)

Experimental Results(BoF,25class)

25 class classification (BoF)

kNN (top-k)

Experimental Result (SIFT,5class)

	1	2	3	4	5	Recall(%)
1: Animal	155	14	37	37	7	62
2: Car	10	228	3	4	5	91
3: Flower	35	15	150	41	9	60
4: Food	43	24	40	135	8	54
5: Musical instrument	12	128	10	14	86	34
Precision(%)	61	56	63	58	75	60.3

Experimental Results (SIFT,25class)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Recall(%)
Animal	1: Cat	7	4	5	6	3	2	0	2	1	0	1	U	Э	3	3	1	2	3	0	0	0	0	1	0	1	14
	2: Dog	6	2	0	3	2	1	0	0	1	5	0	3	7	4	3	4	3	0	0	2	0	1	1	0	2	4
	3: Elephant	2	3	9	7	3	2	0	1	0	0	4	2	13	0	0	0	1	1	0	0	0	1	1	0	0	18
	4: Lion	2	1	1	21	6	0	0	0	0	0	2	3	8	0	1	1	1	3	0	0	0	0	0	0	0	42
	5: Tiger	3	0	0	4	39	1	0	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	0	78
	6: Impreza	0	1	0	2	0	21	3	6	6	6	1	0	1	0	0	0	0	0	1	0	0	0	0	2	0	42
	7: Lexus	0	0	0	0	0	13	12	7	6	7	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	24
Car	8: Odyssey	0	0	0	0	1	10	8	7	7	12	0	0	0	0	0	1	1	0	1	0	0	0	1	1	0	14
	9: Pajero	0	0	0	0	0	7	5	7	16	14	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	32
	10: Prius	1	1	2	0	0	5	6	8	5	15	1	0	0	0	0	0	1	0	1	0	0	0	1	2	1	30
-	11: Cosmos	0	0	1	1	0	1	U	1	U	U	28	3	1	4	2	0	0	4	0	1	1	0	0	1	1	56
	12: Dandelion	1	0	0	4	0	0	0	1	0	0	9	22	9	0	0	1	0	1	0	0	0	2	0	0	0	44
Flower	13: Lavender	0	0	2	4	2	0	0	0	0	0	6	0	30	0	0	2	0	2	0	0	0	0	0	2	0	60
	14: Lily	4	1	0	1	0	2	0	1	0	0	6	2	2	12	7	3	0	4	1	2	0	0	0	2	0	24
	15: Rose	0	1	0	1	2	0	0	1	0	0	4	0	3	4	25	3	2	1	0	1	0	1	0	0	1	50
	16: Cake	2	1	2	2	0	0	3	3	2	1	5	0	4	1	2	6	5	4	1	0	0	0	0	3	3	12
	17: Hamburger	2	4	1	4	1	0	0	0	3	0	3	0	1	2	4	9	4	4	3	3	0	1	0	0	1	8
Food	18: Pizza	3	3	0	5	1	0	0	0	0	0	3	0	4	0	3	3	2	20	2	0	0	0	0	0	1	40
	19: Ramen	1	0	3	1	1	0	2	2	0	1	2	1	2	2	3	9	3	5	9	2	0	0	0	1	0	18
	20: Sushi	0	4	0	1	1	1	1	1	0	1	3	0	1	3	4	13	3	2	1	6	0	1	0	0	3	12
	21: Dram	3	1	1	1	0	3	10	3	2	3	2	1	1	0	3	2	4	3	2	0	0	0	2	1	2	0
	22: Flute	0	0	0	1	0	7	11	4	4	2	0	0	0	0	2	1	2	0	3	0	1	5	0	5	2	10
Musical instrument	23: Guitar	1	1	0	0	0	3	0	2	2	5	0	0	0	0	0	0	0	1	0	1	0	1	29	1	3	58
	24: Piano	0	0	0	0	0	0	4	3	3	3	0	0	0	0	0	0	0	0	1	0	0	0	1	35	0	70
	25: Violin	0	0	1	1	0	5	4	5	1	2	0	0	0	0	0	2	0	0	0	0	0	0	1	2	26	52
	Precision (%)	18	7	32	30	63	25	17	11	27	19	35	59	32	33	40	10	11	33	33	32	0	38	76	60	55	32.5

Experimental Results(SIFT,25class)

Higher ranked images

Query images

Conclusions

 Generic object recognition by feature matching based specific object recognition

- It performed well with a large number of sample images
 - Almost equivalent to the result by generic recognition
 - 5class 60.3%, 25class 32.5%

Future works

- More large-scale experiments
 - Using parallel computing
- informative feature
 - Use only discriminative features for image categorization.

Experimental Results(SIFT,25class)

