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Abstract—So many people are posting photos as well as short
messages to Twitter every minutes from everywhere on the
earth. By monitoring the Twitter stream, we can obtain various
kinds of photos with texts. In this paper, as case studies of real-
time Twitter photo mining, we introduce our current on-going
projects on event photo discovery and food photo mining from
the Twitter stream.
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I. INTRODUCTION

So many people are posting photos as well as short mes-
sages to Twitter every minutes from everywhere on the earth.
People send photos with short messages to Twitter soon
after taking photos on the spot. Therefore, by monitoring
the Twitter stream and picking up Tweet photos, we get
to know the current state of the world visually. This is
a biggest difference of Twitter to other social media. By
taking account of this unique characteristic of Twitter, we
are working on mining photos from the Twitter stream [1],
[2], [3], [4].

In [1], we proposed a real-time geotagged tweet photo
mapping system, “World Seer”, which visualizes photo
tweets with geotags on the Google Maps in real-time way
as well as stores information on geo-photo tweets to our
database continuously by monitoring the Twitter streaming
via the Twitter Streaming API. We have been collecting both
geo-photo tweets and photo tweets without geotags continu-
ously since February 2011. Currently, we are collecting more
than five hundred thousand geo-photo tweets a day and more
than two million photo tweets a day. In fact the number of
photo tweets varies depending on the week of the day. In
weekends, the number increases by about 20% compared
to weekdays. At present, our geo-photo tweet database has
more than 500 million geo-photo tweets and more than two
billion photo tweets without geotags, which can be regarded
as a huge photo database.

Although Twitter provides Twitter API which enables us
to search the Twitter database by keywords, time and date
or geotags in addition to Twitter Streaming API which just
transmits current tweets continuously with keyword filtering
or geo-location filtering, the search function of Twitter API

is limited in terms of the number of retrieved tweets (100)
and the number of requests per unit time (450/3hours), which
is not suitable for research purpose on a large-scale analysis
on Twitter data. That is why we are collecting photo tweets
from the Twitter stream continuously and storing them to
our database.

We think that Twitter is a promising data source of
geotagged of photos, while Flickr has been the most popular
data source of geotagged photos in the research community
of multimedia so far. Since the characteristic of Twitter is
quickness and on-the-spot-ness, the photos on Twitter are
different from the photos on Flickr. Flickr has many travel
photos, while Twitter has many photos related to everyday
life such as food, weather, street scene and some events.
Therefore, we think that geo-tweet photos are more useful
to understand what happens currently over the world than
Flickr geo-photos.

By using this database, we are working on even photo
mining [2], [3] from Twitter geo-photo tweets and food
photo mining [4] from Twitter photo tweets. In this paper,
we introduce our two kinds of Twitter photo mining works
on events and foods.

II. TWITTER EVENT PHOTO MINING

In this section, we introduce a system to mine events
from the Twitter stream. To do that, we pay attention to
the tweets having both geotags and photos. We call such
tweets as “geo-photo tweets”. So far some works on event
mining which utilize geotagged tweets have been proposed
such as Sakaki et al.’s typhoon and earthquake detection [5].
However, they used no images but only textual analysis of
tweet texts. On the other hand, in this work, we detect events
using visual information as well as textual information. In
the experiments, we show some examples of detected events
and their photos such as “rainbow”, “fireworks” and “Tokyo
firefly festival”.

We propose a Twitter visual event mining system which
consists of event keyword detection, event photo clustering
and representative photo selection. The processing steps of
the proposed system are as follows:



(1) Detect event keyword candidates which frequently
appear in the tweets posted from specific areas in
specific days.

(2) Unify and complement detected event keywords

(3) Select geo-tweet photos corresponding to the event
keywords by image clustering

(4) Select a representative photo to each event

(5) Show the detected events with their representative
photos on the map

Note that the current system assumes the tweet mes-
sages written by either English or Japanese language, since
keyword extraction needs to be taken into account of the
characteristics of target language. However, it is not so
difficult to extend the proposed system to other languages.

A. The proposed method
In this subsection, we explain each step of the proposed

system briefly.
1) Textual Analysis: Tweet messages are written in sen-

tences or sets of words in general. To detect events easier,
at first we extract noun words from each tweet message.
To do this, for tweets written in English, we apply the
English morphological analyzer which is specialized for
tweet messages, TweetNLP, while for tweets written in
Japanese language, we apply the Japanese morphological
analyzer, MeCab. According the output of the morphological
analyzer, we extract only noun words as keywords from each
tweet after stop-word removal.

To detect events, we search for bursting keywords by
examining change of the daily frequency of each keywords
within each unit area. The area which is a location unit to
detect events are defined in the grids by one degree latitude
and one degree longitude. In case that the daily frequency of
the specific keyword within one grid area increases greatly,
we consider that an event related to the specific keyword
happened within the area in that day.

In the previous step, we limited an event keyword to
a single noun keyword. However, since some events are
represented by compound keywords, the same event are
sometimes detected by several keywords independently. In
such case, we unify them into a compound keyword related
to the same event according to the following heuristics:

(1) In case that more than half of the tweets related to
a specific event keyword overlaps the tweets related
to another event keyword, the former keywords are
integrated and replaced with the latter keywords.

• E.g. “rain” and “typhoon” ⇒ “typhoon”

(2) In case that words just after or before the detected
event keyword are the same in more than 80% tweets
including the keyword, such words are regarded as
being part of a compound event keyword.

• E.g. “Tokyo”, “sky” and “tree” ⇒ “Tokyo Sky-
tree”

B. Visual Analysis

Until the previous step, event keywords and their corre-
sponding tweets have been selected. In this step, we carry
out clustering of the photos embedded in the selected event
tweets and selecting representative ones from them.

As image features, we use bag-of-features (BoF) with
densely-sampled SURF local features and 64-dim RGB color
histograms. SURF keypoints are sampled with every 10
pixels in the scale 5, 10 and 15. The size of the codebook
for BoF was set as 1000. Both feature vectors are L1-
normalized.

For clustering photos, we use the Ward method which
is one of agglomerative hierarchical clustering methods. It
creates clusters so to minimize the total distance between the
center of each cluster and the cluster members. It merges the
cluster pairs which bring the minimum total error calculated
in the following equation one by one.

We evaluate each of the obtained clusters in terms of
visual coherence. We calculate visual coherence score VC .
When VC is high, the corresponding cluster is likely to
strongly related to the event. On the other hand, in case
that VC is lower, the cluster is expected to be a noise one
which is less related to the event.

In addition, the cluster having the maximum value of
VC is regarded as a representative cluster, and the photo
the visual feature vector of which is the closest to the
cluster center is selected as a representative photo for the
corresponding event. Please see the detail in [3].

C. Experimental results

In the experiment, we prepared two large-scale geo-
photo tweet databases which are extracted from our geo-
photo tweet database: The first one is a Japan geo-photo
tweet database which consists of about three million geo-
photo tweets posted from Japan from February 10th, 2011
to September 30th, 2012. The second one is a United
States geo-photo tweet database, which consists of seventeen
million geo-photo tweets posted from United States from
January 1st, 2012 to December 31st, 2012.

As results of event keyword detection for the given
datasets, we obtained 258 and 1676 event keywords from
the Japan and US dataset related to natural phenomena such
as “rainbow” and “typhoon” and local events related to “fire-
works” and“festival”, and the accuracy of the event keyword
detected finally were 86.4% and 88.9%, respectively.

Some detected events are shown on the map with their
representative photos in Figure 1 and Figure 2. These map
are interactive maps based on Google Maps API, and a
user can see any event photos by clicking markers on the
maps. Figure 3 shows detected beautiful sunset photos after
after clicking the representative photo shown in the pop-up



maker. This map-based interactive event viewing system is
available via Web at http://mm.cs.uec.ac.jp/event/ for the
US dataset and at http://mm.cs.uec.ac.jp/event jp/ for the
Japan dataset.

Figure 1. Some detected events in Japan are shown on the map with their
representative photos.

With the proposed method, we implemented a real-time
system. Because our method requires relatively light com-
putation, the proposed method can be used as a method of
the real-time event detection with multi-thread processing.
While in the previous experiments we detected event photos
from our tweet photo database, we show a result we detected
by the real-time event photo detection system from the
Twitter stream in Figure 4 which corresponds to “fireworks”
in Tokyo area at July 26th, 2014.

III. TWITTER FOOD PHOTO MINING

In this section, we focus on food photos embedded in
Tweets as the second case study on a large-scale Twitter
photo analysis. Food is one of frequent topics in Tweets
with photos. In fact, we can see many food photos in lunch
and dinner time in the Twitter stream.

In this section, by combining keyword-based search and
food image recognition, we mine food photos from the
Twitter stream. To collect food photos from Twitter, we
monitor the Twitter stream to find the tweets containing both
food-related keywords and photos, and apply a “foodness”
classifier and 100-class food classifiers to them to verify
whether they shows foods or not after downloading the cor-
responding photos. We used the state-of-the-art Fisher Vector

Figure 2. Some detected events in US are shown on the map with their
representative photos.

Figure 3. “Sunset” photos after clicking the representative photo shown
in the pop-up maker.

coding with HoG and Color patches for food classifiers
which is slightly modified with the rapid food recognition
method for mobile environments proposed in [6], and trained
them with the UEC-FOOD100 dataset [7]1 which consists
of 100 kinds of foods commonly eaten in Japan. Since
we employ the improved method of the real-time mobile
recognition, it takes only 0.024 seconds to recognize one
image and it achieved about 83% classification rate within
the top five candidates.

In the experiments, we report the results of our food
photo mining on 100 kinds of foods in the UEC-FOOD100
dataset from the photo tweet log data we have collected for
two years and four months. As results, we detected about

1http://foodcam.mobi/dataset/



Figure 4. The event keyword, “fireworks”, detected by real-time event photo detection.

470,000 food photos from Twitter with about 99% accuracy.
With this data, we have made spatio-temporal analysis on
food photos. In addition, we have implemented the real-time
food photo detection system from the Twitter stream.

A. Overview

In this section, we describe an overview of the proposed
method to mine food photos from the stored Twitter logs as
well as the Twitter stream. We employ the following three-
step processing.

(1) We perform keyword-based search with the names
of target foods over a set of photo Tweets.

(2) We apply a newly-proposed “foodness” classifier
to the tweet photos selected by the keyword-based
search for classifying then into either of “food” or
“non-food” photo.

(3) We apply individual food classifiers corresponding
to the food names. In the experiments, we prepared
multi-class discriminative classifiers trained by SVM
with the UEC-FOOD100 dataset in the one-vs-rest
manner.

The food classifiers employed in the third step is a slight
modification of the method for mobile food recognition
proposed in [6], while the foodness classifier is newly
proposed for removing non-food photos.

B. Detail of the Proposed Method

1) Keyword-based Photo Tweet Selection: In the first
step, we select photo tweets by keyword-based search with
the names of the target foods. We search tweet message texts
for the words of the target food names.

As the target foods, we used 100 kinds of foods in the
UEC-FOOD100 dataset in the experiments. Because the
UEC-FOOD100 dataset includes common foods in Japan

such as ramen noodle, curry, and sushi, we searched only
photo tweets the message texts of which are written in
Japanese language. We can easily select them by checking
the language attribute of each tweet obtained from the
Twitter Streaming API.

2) Foodness Classifier: We construct a “Foodness”
Classifier (FC) for discriminating food images from non-
food images. FC evaluates if the given image is a food photo
or not. We use FC to remove noise images from the images
gathered from the tweet photos selected by the food names.

We construct a FC from the existing multi-class food
image dataset. Firstly, we train linear SVMs [8] in the one-
vs-rest strategy for each category of the existing multi-
class food image dataset. As image features, we adopt
HOG patches [9] and color patches in the same way as
[6]. Although HOG patches are similar local features to
SIFT [10], HoG can be extracted much faster than SIFT.
Both descriptors are coded by Improved Fisher Vector
(IFV) [11], and they are integrated in the late fusion manner.
We perform multi-class image classification in the cross-
validation using the trained liner SVMs, and we build a
confusion matrix according to the classification results. In
the experiments, we used 64 GMMs for IFV coding and
two-level spatial pyramid [12], which is much improved
from mobile food recognition [6] in terms of the feature
dimension.

Secondly, we make some category groups based on con-
fusion matrix of multi-class classification results. This is
inspired by Bergamo et al.’s work [13]. They grouped a
large number of categories into superordinate groups the
member categories of which are confusing to each other
recursively. In the same way, we perform confusion-matrix-
based clustering for all the food categories. We intend to
obtain superordinate categories such as meat, sandwiches,
noodle and salad automatically. As results, in the experi-
ments, we obtained 13 food groups as shown in Table I.



Table I
13 FOOD GROUPS AND THEIR MEMBER FOODS FOR THE “FOODNESS”

CLASSIFIER.

food group food categories
noodles udon nooles, dipping noodles, ramen

yellow color omlet, potage, steamed egg hotchpotch
soup miso soup, pork miso soup, Japaneses tofu and vegetable chowder
fried takoyaki, Japaneses-style pancake, fried noodle

deep fried croquette, sirloin cutlet, fried chicken
salad green salad, macaroni salad, macaroni salad
bread sandwiches, raisin bread, roll bread

seafood sashimi, sashimi bowl, sushi
rice rice, pilaf, fried rice
fish grilled salmon, grilled pacific saury, dried fish

boiled seasoned beef with potatoes
and simmered ganmodoki

seasoned seasoned beef with potatoes
sauteed sauteed vegetables, go-ya chanpuru, kinpira-style sauteed burdock
sauce stew, curry, stir-fried shrimp in chili sauce

To build a “foodness” classifier (FC), we train a linear
SVM of each of the superordinate categories. The objective
of FC is discriminating a food photo from a non-food photo,
which is different from the objective of the third step for
discriminating a specific food photo from other kinds of
food photos. Therefore, abstracted superordinate categories
are desirable to be trained, rather than training of all the food
categories directly. The output value of FC is the maximum
value of SVM output of all the superordinate food groups.

When training SVMs, we used all the images of the cate-
gories under the superordinate category as positive samples.
For negative samples, we built a negative food image set in
advance by gathering images using the Web image search
engines with query keywords which are expected to related
to noise images such as “street stall”, “kitchen”, “dinner
party” and “restaurant” and excluding food photos by hand.
All the images are represented by Fisher Vector of HoG
patches and color patches. SVMs are trained in the late
fusion manner with uniform weights.

In the second step, we apply FC for the selected tweet
photos and remove non-food photos from the food photo
candidates.

3) Specific Food Classifiers: In this step, we classify a
given photo into one of the prepared food classes.

First, we extract HOG patches and Color patches in a
dense grid sampling manner in the same way as the previous
step. Then, we apply PCA to all the extracted local features,
and encode them into Improved Fisher Vectors. The method
to extract features is the same as the previous step including
the parameter settings. Next, we evaluate linear classifiers in
the one-vs-rest way by calculating dot-product FVs. Finally
we output the top-N categories in terms of the descending
order of evaluation scores of all the linear classifiers.

In the experiments, we regarded the given tweet photo as a
photo of the corresponding food if the food names contained
in the tweet messages are ranked in the top five categories

by evaluation of 100-kind food classifiers. This is because
the top-5 classification rate exceeds 83%, while the top-1
rate is still around 60%.

C. 100 Food Categories and Their Classifiers

In this subsection, we describe the detail of the 100-
class food dataset we used in the experiments. In the
experiments, as target foods, we used 100 foods in the
UEC-FOOD100 [7]2, because we employ supervised food
photo classification which requires training data to select
the target foods in the third step. It contains more than 100
images per category, and all the food item in which are
marked with bounding boxes. For training and evaluation,
we used only the regions inside the given bounding boxes.
The total number of food images in the dataset is 12,905.
UEC-FOOD100 dataset consists of common foods in Japan.
Then, we restricted tweets from which we mine food photo
tweets to only the tweets with Japanese messages.

In [6], they implemented a mobile food recognition sys-
tem using the same dataset. Although basically we fol-
lowed their method for individual food classification in the
third step, we extended the parameter setting to improved
accuracy. To say it concretely, we doubled the size of
GMM for FV encoding from 32 to 64, and added two-level
spatial pyramid. As a result, the total feature dimension are
raised from 3072 to 35840, which boosted the classification
performance evaluated by 5-fold cross-validation as shown
in Figure 5. Regarding the processing time, it takes only
0.024 seconds per image to recognize on Core i7-3770K
3.50GHz with multi-threaded implementation optimized for
a quad-core CPU.

Figure 5. Comparison on the top-k classification rates with the UEC-
FOOD100 dataset evaluated by 5-fold cross validation between [6] and
this paper.

2http://foodcam.mobi/dataset/



D. Experimental Results

In this subsection, we describe the experimental results on
twitter food photo mining. We have been collecting photo
tweet logs by monitoring the Twitter stream by using Twitter
Streaming API. Here, we used 122,328,337 photo tweets
with Japanese messages out of 988,884,946 photo tweets
over all the world collected from May 2011 to August 2013
for two years and four months.

From these photo tweets, we selected 1,730,441 photo
tweets the messages of which include any of the name words
of the 100 target foods in the first step of the proposed
processing flow. Then, in the second step, we applied a
“foodness” classifier (FC) to all the selected images. After
applying FC, we applied 100-class one-vs-rest individual
food classifiers. As a result, we obtained 470,335 photos
which are judged as food photos corresponding to any of
the 100 target food categories by our proposed processing
pipeline.

For the 470,335 selected photos as food photos, we
evaluate the number of selected photos for each category.
Table II shows the ranking of 100 food categories in terms
of the number of mined tweet food photos. The number
of “Ramen noodle” and “curry” photos are the most and
the second most with the large margin to the third or less
ranked food categories, respectively. In fact, “ramen” and
“curry” are regarded as the most popular foods in Japan.
“Sushi”, “dipping noodle (called as Tsukemen in Japanese)”
and “omelet with fried rice (called as Ome-rice in Japanese)”
are also popular foods in Japan. The results of twitter food
image mining reflects food preference of Japanese people.
In addition, we found that many of “ome-rice” had drawings
or letters drawn with ketchup, as shown in Figure 6. These
are estimated to be made at home, while most of “ramen”
and “sushi” photos are taken at food restaurants, because
there are many ramen noodle and sushi restaurant in Japan.
Although “hamburger” and “beef bowl” are also popular in
Japan as fast food served at fast-food restaurants such as
McDonald and Yoshino-ya, they are ranked at more than
twentieth. This is because the foods provided by nation-wide
fast-food chain restaurants such as McDonaldo are the same
everywhere in the same chain restaurants, and they are not
worth posting their photos to Twitter. On the other hand,
since there are no monopolistic restaurant chains on ramen
noodle and curry in Japan, the foods served at every ramen
or curry restaurants have originality and are different from
each other.

Next, we evaluated the precision rate of the selected food
photos in the each steps regarding the top five foods and
two sub-categories of “ramen noodle” and “curry”. Table III
shows the results in case of four types of the combinations of
the three kinds of the selection methods, (1) only keywords,
(1)+(2) keywords and foodness classifier (FC), (1)+(3) key-
words and individual food classifier(IFC), and (1)+(2)+(3)

Figure 6. Examples of “omelet” photos. Most of them have drawings
drawn by ketchup.

keywords, FC and IFC. Note that this evaluation was done
for the 300 random-sampled photos for each cell in the table.

Regarding (1), the precision of two sub-categories, “beef
ramen noodle” and “cutlet curry”, are relatively higher,
94.3% and 92.7%, than “ramen noodle” and “curry”. From
this results, we can assume that when tweeting detailed
food names with photos, the photos probably represent
the corresponding foods. After applying both FC and IFC,
(1)+(2)+(3), the precision of all the seven foods achieved the
best compared to the cases of applying only single methods
or only keyword-based search, (1), (1)+(2) and (1)+(3). Ex-
cept for “sushi”, the precision reached 99.0%, which means
nearly perfect. This shows the effectiveness of introducing
both FC and IFC after keyword-based search. Exceptionally,
“sushi” is a difficult food to recognize by object recognition
methods, because the appearances of “sushi” varies greatly
depending on the kinds of the ingredients on the pieces of
hand-rolled rice.

Finally, we describe simple spatio-temporal analysis on
Twitter food photos. Figure 7 shows the prevailing-food
map where the red marks, the yellow marks and the blue
marks represent the areas where “ramen noodle”, “curry”
and “okonomiyaki” are most popular in terms of the number
of food photo tweets, respectively. The left map, the center
map, and the right map show the prevailing-food map on
all the term (May 2011-Aug. 2013), Dec. 2012 (in winter),
and Aug. 2013 (in summer), respectively. From the leftmost
map, “ramen noodle” is the most popular over Japan on
average through a year. However, compared between the
center map and the rightmost map, popularity of “curry”
increases in summer, while “ramen noodle” becomes the
most popular in winter. Exceptionally, in the area around
Hiroshima where the blue marks appear, “okonomiyaki” is
always the prevailing food in Twitter food photos, this is
partly because Hiroshima has a very popular regional food,
“Hiroshima-yaki”, which is a variant of “okonomiyaki”.

As another temporal analysis on the mined food photos,
we examined the time when each food are eaten the most
frequently over a day. As results, the most frequent time
when “ramen noodle” and “curry” are eaten is between
12pm and 2pm, while the most frequent time of “sushi”
and “okonomiyaki” is between 7pm and 9pm. This reflects
the difference of the characteristic of the foods. As shown in



Table II
THE RANKING OF 100 FOODS IN TERMS OF THE NUMBER OF MINED TWEET FOOD PHOTOS.

1 ramen noodle 80021
2 curry 59264
3 sushi 25898
4 dipping noodle 22158
5 omelet with fried rice 17520
6 pizza 16921
7 jiaozi 16014
8 Japanese-style pancake 15234
9 steamed rice 14264

10 sashimi 13927
11 hambarg steak 11583
12 beef stake 9503
13 takoyaki 9004
14 fried rice 8383
15 fried noodle 7905
16 oden 7453
17 toast 6350
18 cutlet curry 6339
19 tempura 5905
20 rice ball 5462
21 gratin 5223
22 croquette 4837
23 stew 4797
24 sashimi bowl 4730
25 chicken-’n’-egg on rice 4513
26 tempura bowl 4464
27 beef bowl 4285
28 spicy chili-flavored tofu 4081
29 yakitori 3829
30 hamburger 3662
31 chilled noodle 3473
32 sukiyaki 3408
33 miso soup 3295

34 fish-shaped pancake with bean jam 3281
35 pork cutlet on rice 3188
36 omelet with grilled minced meat 2592
37 bibimbap 2368
38 spaghetti 2171
39 lightly roasted fish 2162
40 seasoned beef with potatoes 2129
41 natto 2094
42 spaghetti with meat source 1994
43 steamed egg hotchpotch 1843
44 egg sunny-side up 1635
45 croissant 1579
46 udon noodle 1500
47 simmered pork 1443
48 mixed sushi 1371
49 pork miso soup 1229
50 ginger-fried pork 1158
51 potato salad 1150
52 egg omelet 1146
53 eels on rice 1071
54 egg roll 1058
55 sweet and sour pork 1049
56 fried shrimp 1049
57 sauteed vegetables 1040
58 shrimp with chill source 1003
59 cabbage roll 965
60 mixed rice 901
61 pilaf 891
62 soba noodle 880
63 potage 816
64 hot dog 795
65 chicken rice 736
66 wiener sausage 577

67 dried fish 563
68 steamed meat dumpling 561
69 french fries 561
70 beef ramen noodle 555
71 sandwiches 551
72 cold tofu 517
73 boiled chicken and vegetables 352
74 sirloin cutlet 331
75 nanbanzuke 323
76 fried chicken 314
77 stir-fried beef and peppers 312
78 roll bread 288
79 roast chicken 263
80 macaroni salad 239
81 boiled fish 228
82 kinpira-style sauteed burdock 225
83 tempura udon 213
84 raisins bread 205
85 goya chanpuru 198
86 green salad 145
87 chinese soup 141
88 Japanese tofu and vegetable chowder 137
89 salmon meuniere 96
90 grilled pacific saury 84
91 chip butty 76
92 fried fish 72
93 begitable tempura 71
94 tensin noodle 69
95 ganmodoki 34
96 grilled salmon 25
97 sauteed spinach 12
98 teriyaki grilled fish 3
99 grilled eggplant 2
100 pizza toast 0

Table III
THE NUMBER OF SELECTED PHOTOS AND THEIR PRECISION(%) WITH FOUR DIFFERENT COMBINATIONS.

food category (1) (1)+(2) (1)+(3) (1)+(2)+(3)
ramen noodle 275652 (72.0%) 200173 (92.7%) 84189 (95.0%) 80021 (99.7%)

beef ramen noodle 861 (94.3%) 811 (99.0%) 558 (99.7%) 555 (99.7%)
curry 224685 (75.0%) 163047 (95.0%) 62824 (97.0%) 59264 (99.3%)

cutlet curry 10443 (92.7%) 9073 (98.0%) 6544 (98.7%) 6339 (99.3%)
sushi 86509 (69.0%) 43536 (86.0%) 48019 (72.3%) 25898 (92.7%)

dipping noodle 33165 (88.7%) 24896 (96.3%) 28846 (93.7%) 22158 (99.0%)
omelet with fried rice 34125 (90.0%) 28887 (96.3%) 18370 (98.0%) 17520 (99.0%)

this subsection, the data we collected through Twitter food
photo mining is useful for food habit analysis.

E. Real-time Food Photo Detection System

We implemented a real-time Twitter food photo detection
system which continuously detects 100 kinds of food photos
from the Twitter stream. We detect the photo tweets includ-
ing any of 100 kinds of Japanese food names about ten
times per minute at most. Because the time to download a
thumbnail image is about 2 or 3 seconds and the processing
time for food recognition for each image is less than 0.1
seconds, we can process all the pipeline on a single machine
in the real-time way. The very fast food recognition method
which was originally designed for a mobile application [6]
made it possible. With this system, currently we always
keep running the real-time food photo detection system and
collecting new food photos. For example, we are collecting

about 20,000 “ramen noodle” and 15,000 “curry” photos per
month.

As shown in Figure 8, the detected food photos are
shown on the map if they have geotags or geo-related
words such as place names in their Tweet messages, and
on the right side the photos are displayed as the results by
online k-means clustering. This system can be accessible via
http://mm.cs.uec.ac.jp/tw/.
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