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ABSTRACT

In this paper, we examined the effectiveness of deep con-
volutional neural network (DCNN) for food photo recogni-
tion task. Food recognition is a kind of fine-grained visual
recognition which is relatively harder problem than conven-
tional image recognition. To tackle this problem, we sought
the best combination of DCNN-related techniques such as
pre-training with the large-scale ImageNet data, fine-tuning
and activation features extracted from the pre-trained DCNN.
From the experiments, we concluded the fine-tuned DCNN
which was pre-trained with 2000 categories in the ImageNet
including 1000 food-related categories was the best method,
which achieved 78.77% as the top-1 accuracy for UEC-
FOOD100 and 67.57% for UEC-FOOD256, both of which
were the best results so far.

In addition, we applied the food classifier employing the
best combination of the DCNN techniques to Twitter photo
data. We have achieved the great improvements on food photo
mining in terms of both the number of food photos and accu-
racy. In addition to its high classification accuracy, we found
that DCNN was very suitable for large-scale image data, since
it takes only 0.03 seconds to classify one food photo with
GPU.

Index Terms— deep convolutional neural network food
recognition Twitter photo mining

1. INTRODUCTION

Food image recognition is one of the promising applica-
tions of visual object recognition, since it will help esti-
mate food calories and analyze people’s eating habits for
health-care. Therefore, many works have been published so
far [1, 2, 3, 4, 5, 6, 7]. To make food recognition more prac-
tical, increase of the number of recognizable food is cru-
cial. In [4, 3], we created 100-class food dataset, UEC-
FOOD100, and made experiments with 100-class food clas-
sification. The classification accuracy reported so far was
72.26% [8], which still needs to be improved for practical
use. Moreover, recently we proposed a framework to extend
an existing dataset automatically [9], and with it we extended
a 100-class food dataset into a 256-class food dataset called as
UEC-FOOD256. To make food classification more practical,
we need more sophisticated food image classifiers.

Meanwhile, recently the effectiveness of Deep Convo-
lutional Neural Network (DCNN) have been proved for
large-scale object recognition at ImageNet Large-Scale Vi-
sual Recognition Challenge (ILSVRC) 2012. Krizhevsky et
al. [10] won ILSVRC2012 with a large margin to all the other
teams who employed a conventional hand-crafted feature ap-
proach. In the DCNN approach, an input data of DCNN is a
resized image, and the output is a class-label probability. That
is, DCNN includes all the object recognition steps such as lo-
cal feature extraction, feature coding, and learning. In gen-
eral, the advantage of DCNN is that it can estimate optimal
feature representations for datasets adaptively [10], the char-
acteristics of which the conventional hand-crafted feature ap-
proach do not have. In the conventional approach, we extract
local features such as SIFT and SURF first, and then code
them into bag-of-feature or Fisher Vector representations.

To train a DCNN directly, we need a large-scale image
data such as the ILSVRC dataset which contains more than
one million images. If a large-scale training data is always
needed, applicable problems of a DCNN is very limited. To
avoid such situation and to make a DCNN effective even for
small-scale data, two important techniques have been pro-
posed so far.

The first one is using a pre-trained DCNN with a large-
scale dataset such as the ILSVRC dataset as a feature vector
extractor for a small-scale data. By extracting activation sig-
nals from the intermediate layer of the DCNN after an image
is provided into the first layer of the pre-trained DCNN and
its signals are propagated into the upper layers, the extracted
signal can be regarded as image features. This DCNN fea-
tures are commonly extracted from the output signals of the
previous layer of the last one in the pre-trained DCNN. Don-
ahue et al. [11] confirmed the effectiveness of DCNN features
with Caltech-101 [12] and SUN-397 database [13]. Chat-
field et al. made comprehensive experiments employing both
DCNN features and conventional features such as SIFT and
Fisher Vectors on PASCAL VOC 2007 and Caltech-101/256
which can be regarded as small-scale datasets where they had
only about one hundred or less images per class [14]. DCNN
features have been proved to be effective not only for image
classification but also image retrieval [15] and specific object
recognition tasks [16]. In this case, a DCNN can be used
for only a feature extractor, and a linear SVM is commonly
used as a classifier. By using a SVM as a classifier, it is easy
to fuse other kinds of image features such as bag-of-features



representation and Fisher vector representation.
The second technique is fine-tuning of the pre-trained

DCNN. “Fine-tuning” is tuning the parameters pre-trained
with a large-scale data using another small-scale data. With
fine-tuning, the DCNN originally for a large-scale data is
modified and adapted to other tasks. In this case, a DCNN
is used as both a feature extractor and a classifier. That is, a
classification result is obtained directly from the output layer
of a DCNN. In general, the data for pre-training is not al-
ways needed to be related to the training data for fine-tuning.
However, Oquab et al. [17] showed that it is important that
the pre-training data is strongly related to the fine-tuning data
for better performance. For fine-tuning for PASCAL VOC
categories, they selected 512 additional categories related to
twenty VOC categories such as bus bicycle and bird from
the whole ImageNet database, and pre-trained a DCNN with
1512 ImageNet categories which consisted of the ILSVRC
1000 categories and the selected 512 categories.

Both techniques can be regarded as a kinds of “transfer
learning” which trains a classifier with source domain data
and adapts it with target domain data.

So far, Kawano et al. [8], Kagaya et al. [2] and Bossard
et al. [1] have applied DCNN to food image classification.
Kawano et al.[8] used DCNN features pre-trained with the
ILSVRC data for food classification. However, they failed
to confirm that the single DCNN-based method outperformed
the conventional methods which was based on Fisher Vec-
tor [18]. They confirmed only that DCNN features improved
the performance by integrating them with Fisher vectors.

Kagaya et al. [2] trained a DCNN from scratch with-
out employing pre-training and fine-tuning. They prepared
170,000 images of 10 food categories. They proposed sev-
eral kinds of DCNN architectures which are smaller than
Alexnet [10] and compared them with conventional methods
such as SPM-BoF except for Fisher vector. As results, DCNN
outperformed conventional methods greatly.

Bossard et al. [1] trained the same DCNN as Alexnet ex-
cept for the size of the output layer by Caffe [19] with the
Food-101 dataset which contained one million food photos
of 101 categories. They also trained DCNN from scratch.
DCNN outperformed all the methods including the proposed
method in [1].

Regarding food datasets, the effectiveness of DCNN has
not been explored enough, because in the above-mentioned
works only training DCNNs from scratch with a large-scale
food photo data and usage of DCNN features pre-trained with
the ILSVRC 1000 categories were examined, and no fine-
tuning and pre-trained with augmented dataset have not been
explored yet. Then, in this paper, we apply DCNN features
and fine-tuning with extended training data for 100/256-class
food dataset and examine the effectiveness of DCNN features
and fine-tuning for food photos.

In addition, as an application of the obtained high-
performance DCNN food classifier, we applied the food clas-
sifier employing the best combination of the DCNN tech-
niques to Twitter photo data [20].

Fig. 1. DCNN structure for pre-training ImageNet Challenge
Dataset in Caffe which is based on Krizhevsky’s network.

Fig. 2. DCNN structure for pre-training ImageNet 2000 cat-
egories. The number of cells in the full connection layers is
modified from 4096 to 6144.

2. METHODS

2.1. DCNN Features with ILSVRC2012

Recently, it has been proved that Deep Convolutional Neu-
ral Network (DCNN) is very effective for large-scale object
recognition. However, it needs a lot of training images. In
fact, one of the reasons why DCNN won the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) 2012 is that
the ILSVRC dataset contains one thousand training images
per category [10]. This situation does not fit food datasets
most of which have only about one hundred images a food
category. Then, to make the best use of DCNN for food
recognition, we need to use the pre-trained DCNN with the
ILSVRC 1000-class dataset as a feature extractor, or fine-tune
the pre-trained DCNN.

Following Donahue et al. [11], we extract the network sig-
nals from the previous layer (layer 7) of the last one of the
pre-trained DCNN as a DCNN feature vector. We use the
pre-trained deep convolutional neural network in Caffe [19]
as shown in Figure 1. This is slight modification of the net-
work structure (AlexNet) proposed by Krizhevsky et al. [10]
where the number of elements in the last layer is the same as
the number of the classes, 1000, and the number of elements
in the full connection layer before the last one is 4096. There-
fore, we extract a 4096-dim DCNN vector from the layer 7,
and L2-normalize them to use it as a 4096-dim DCNN feature
vector.

2.2. DCNN Features with ImageNet 2000 Categories

To improve DCNN features, Oquab et al. [17] indicated that it
was effective to pre-train DCNN with the dataset augmented
with additional categories related to the target recognition
task. They added ImageNet categories related to the PASCAL
VOC categories such as furniture and motor-vehicle, and ob-
tained improved results.

Since in our case the targets are foods, we selected 1000
food-related categories from ImageNet 21,000 categories and
added them with the ILSVRC 1000 ImageNet categories for
pre-training of DCNN. To select additional 1000 food-related
categories, first we examined the WordNet hierarchy and



extracted all the subordinate concept nodes (synsets) under
“food”. Then, we obtained 2714 synsets. Among them, only
1526 synsets have been listed in the ImageNet database 1 and
we selected the top 1000 synsets in descending order of the
number of images assigned to each synset. By adding them
to 1000 ImageNet categories in the ILSCRV2012 dataset,
we prepared 2000 ImageNet categories enhanced with 1000
kinds of food-related categories.

We pre-trained a DCNN with this 2000 categories in Im-
ageNet using Caffe [19]. The DCNN used for training 2000
categories is slightly modified from the DCNN for 1000 cat-
egories as shown in Figure 2. The number of the elements in
the output layer is 2000, and the number of the elements in
the full connection layers is 6144. We trained a DCNN with
Caffe on a GPU workstation equipped with NVidia GeForce
TITAN BLACK with 6GB memory, which took about one
week.

In the same way as the DCNN pre-trained with 1000 cat-
egories, we extract a 6144-dim vector from the layer 7, and
L2-normalize it for using it as a 6144-dim DCNN feature vec-
tor.

2.3. Fine-Tuning

We fine-tuned both the DCNN pre-trained with 1000 cate-
gories and the DCNN pre-trained with 2000 categories using
Caffe [19]. We change the size of the last output layer to the
same number as the number of the food categories. In the ex-
periments, we set the number of food categories as 100 and
256. In addition, for Twitter food photo mining, we add a
non-food category to 100 food categories and fine-tuned the
DCNN as a 101-class classifier as well.

2.4. Baseline Features

As conventional baseline features, we extract RootHoG
patches and color patches, and code them into Fisher Vec-
tor (FV) representation with Spatial Pyramid with three levels
(1x1+3x1+2x2). Fisher Vector is known as a state-of-the-art
coding method [18].

RootHoG is an element-wise square root of the L1 nor-
malized HOG, which is inspired by “RootSIFT” [21]. The
HOG we use consists of 2×2 blocks (totally four blocks). We
extract gradient histogram regarding eight orientations from
each block. The total dimension of a HOG Patch feature is
32. After extraction of HOG patches, we convert each of
them into a “RootHOG”. As color patches, we extract mean
and variance values of RGB value of pixels from each of 2×2
blocks. Totally, we extract 24-dim Color Patch features. Af-
ter extracting RootHoG patches and color patches, we apply
PCA and code them into Fisher Vectors (FV) with the GMM
consisting of 64 Gaussians. As results, we obtain a 32768-
dim RootHOG FV and a 24576-dim Color FV for each image.
This setting is almost the same as [3] except for the number
of spatial pyramid levels.

1ImageNet 2011 Fall release which has 21841 synsets.

2.5. Classifiers for DCNN features and Baseline features

We use one-vs-rest linear classifiers for 100/256-class food
classification for DCNN activation features and baseline fea-
tures. In addition to classification employing only single fea-
tures, we integrate both DCNN and conventional baseline fea-
tures as well. For integrating both features, we adopt late fu-
sion with uniform weights. For lower-dimensional DCNN
features, we use a standard linear SVM, while for higher-
dimensional FV features, we use an online learning method,
AROW [22]. As their implementations, we use LIBLIN-
EAR 2 and AROWPP 3.

3. EXPERIMENTS

As a food dataset for the experiments, we use Japanese food
image datasets, the UEC-FOOD100 dataset [4, 3] and the
UEC-FOOD256 dataset [9] which are an open 100/256-class
food image dataset 4. Both include more than 100 images for
each category and bounding box information which indicates
food location within each food photo. We extract features
from the regions inside the given bounding boxes following
[3]. We evaluate the classification accuracy within the top N
candidates employing 5-fold cross validation.

Figure 3 and Figure 4 show the classification accuracy of
UEC-FOOD100 and UEC-FOOD256 within the top-N can-
didates with each of single features, RootHOG FV, Color FV,
DCNN and DCNN-FOOD (DCNN pre-trained with 2000 cat-
egories), the combination of RootHoG and Color FV (writ-
ten as ‘FV’), the combination of FV and DCNN and FV and
DCNN-FOOD, DCNN(ft) (fine-tuned DCNN) and DCNN-
FOOD(ft) (fine-tuned DCNN-FOOD). The numeric values in
classification accuracy for top-1 and top-5 are shown in Table
1. Table 1 contains DCNN(ft2) and DCNN-FOOD(ft2) which
are not shown is the figures. Both of them represent the results
by the DCNN fine-tuned with the augmented UEC-FOOD100
we created by adding at most 1000 food photos mined from
Twitter to each of the 100 categories.

Regarding UEC-FOOD100 classification, among the
three single features, DCNN, RootHoG-FV, and Color-FV,
the DCNN feature achieved the best performance, 57.87%,
in the top-1 accuracy, while RootHoG-FV and Color-FV
achieved 50.14% and 53.04%, respectively. Although the
combination of both FVs achieved 65.32% which was bet-
ter than single DCNN features, the total dimension of the FV
combination was 57,344, which 14 times as larger as the di-
mension of DCNN features. In addition, DCNN-FOOD out-
performed FV combination and DCNN greatly. By adding
1000 food-related categories for pre-training of DCNN, the
top-1 classification rate for UEC-FOOD100 was improved by
14.39 points.

The combination of FV and DCNN achieved 72.26% in
the top-1 accuracy which was almost comparable to the accu-
racy by the single DCNN-FOOD, while the combination of

2http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
3https://code.google.com/p/arowpp/
4http://foodcam.mobi/dataset/



Table 1. Food classification rates on UEC-FOOD 100 and
256 with baseline features and DCNN-based features.

UEC-FOOD100 UEC-FOOD256
features top-1 rate top-5 rate top-1 rate top-5 rate

Color FV 53.04 77.32 41.60 64.00
RootHOG FV 50.14 75.63 36.46 58.83

FV (Color+HOG) 65.32 86.70 52.85 75.51
DCNN 57.87 83.73 43.98 71.29

DCNN-FOOD 71.80 92.75 58.81 83.24
FV + DCNN 72.26 92.00 59.06 82.30

FV + DCNN-FOOD 77.35 94.85 63.77 85.82
DCNN(ft) 75.25 93.19 63.64 86.01

DCNN-FOOD(ft) 78.48 94.85 67.57 88.97
DCNN(ft2) 76.68 94.40 —– —–

DCNN-FOOD(ft2) 78.77 95.15 —– —–

Table 2. Classification rate on ETH Food-101 dataset [1].
RF-based [1] DCNN [1] DCNN(ft) FOOD-DCNN(ft)

50.76 56.40 68.44 70.41

FV and DCNN-FOOD achieved 77.35%.
Regarding the results with fine-tuned DCNNs, al-

though DCNN(ft) was beaten by FV+DCNN-FOOD, DCNN-
FOOD(ft), 78.48%, outperformed all the combinations and
single features, which was the best performance for UEC-
FOOD100 so far. The difference, 3.23, between DCNN(ft)
and DCNN-FOOD(ft) is not as large as the difference, 13.97,
between DCNN and DCNN-FOOD, because both are fine-
tuned with the food data set.

In case of using the augmented UEC-FOOD100 which
contains at most 1000 images for each of the food categories
for fine-tuning, the obtained improvement was very limited
for both DCNN(ft2) and DCNN-FOOD(ft2). This shows the
effectiveness of fine-tuning for a small-scale data.

Regarding UEC-FOOD256 classification, we observed
the similar tendency. Especially, in case of larger num-
ber of food categories, the accuracy by a single DCNN was
poor which are comparable to a single Color FV. In the
same way as UEC-FOOD100, DCNN-FOOD outperformed
DCNN greatly, and fine-tuned DCNNs outperformed oth-
ers. By adding 1000 food-related categories for pre-training
of DCNN, the top-1 classification rate for FOOD256 was
improved by 14.83 points, while the difference between
DCNN(ft) and DCNN-FOOD(ft) was only 3.93 points. Fi-
nally we achieved 67.57% top-1 accuracy for UEC-FOOD256
by DCNN-FOOD(ft).

In addition, we fine-tuned DCNN and DCNN-FOOD with
ETH Food-101 food image dataset5 consisting of 101 kinds of
food images where each of 101 categories has 1000 images,
and examined the food recognition performance on ETH
Food-101. We followed the official train/test splits for the
evaluation of 101 food category classification. Table 3 shows
the results obtained by random forest based discriminative

5https //www.vision.ee.ethz.ch/datasets extra/food-101/

Fig. 3. Classification accuracy within the top N candidate on
UEC-FOOD100 with DCNN, RootHoG-FV, Color-FV, their
combinations and fine-tuned DCNN.

Fig. 4. Classification accuracy within the top N candidate on
UEC-FOOD256 with DCNN, RootHoG-FV, Color-FV, their
combinations and fine-tuned DCNN.

component mining [1], DCNN trained from scratch [1], fine-
tuned DCNN pre-trained with ImageNet1000 (DCNN(ft)),
and fine-tuned DCNN pre-trained with 2000 ImageNet cate-
gories including food-related categories (FOOD-DCNN(ft)).
Compared between DCNN trained from scratch and the fine-
tuned ImageNet-1000 DCNN(ft), DCNN(ft) was much im-
proved by 12.04 points. Regarding DCNN(ft) and FOOD-
DCNN(ft), FOOD-DCNN(ft) outperformed DCNN(ft) by
1.97 points.

From these results, it has been strongly proved that it was
effective and essential to use 1000 food-related categories for
pre-training of DCNN for better performance on food classi-
fication.



Table 3. The number of selected photos and their precision(%) with four different combinations.
food category raw FC FC+100 DCNN DCNN (May 2011-March 2015)

ramen noodle 275652 (72.0%) 200173 (92.7%) 80021 (99.7%) 132091 (99.5%) 272375
beef ramen noodle 861 (94.3%) 811 (99.0%) 555 (99.7%) 590 (100%) 1876

curry 224685 (75.0%) 163047 (95.0%) 59264(99.3%) 68091 (100%) 156397
cutlet curry 10443 (92.7%) 9073 (98.0%) 6339 (99.3%) 7024 (99.9%) 18196

sushi 86509 (69.0%) 43536 (86.0%) 25898 (92.7%) 22490 (99.8%) 83289
dipping noodle 33165 (88.7%) 24896 (96.3%) 22158 (99.0%) 22004 (100%) 69632

omelet with fried rice 34125 (90.0%) 28887 (96.3%) 17520 (99.0%) 20039 (99.9%) 78378

4. APPLYING THE BEST DCNN FOR TWITTER
FOOD MINING

In this section, we describe an example application of the
best DCNN for UEC-FOOD100, DCNN-FOOD(ft2). Note
that in the previous section, we used part of the dataset as
training data for fine-tuning because of five-fold cross vali-
dation, while in this section we used whole the augmented
UEC-FOOD100 data for fine-tuning the DCNN pre-trained
with 2000 ImageNet categories including 1000 food-related
categories. For Twitter food mining, it is required to exclude
non-food photos. To do that, we added a non-food category to
100 categories of UEC-FOOD100. We used 10000 non-food
photos collected from Twitter as training data for a non-food
category. We fine-tuned the pre-trained DCNN-FOOD as a
101-class classifier which can recognize non-food photos as
well as 100-class food photos. Before applying the fine-tuned
DCNN for Twitter data, we evaluated food-nonfood classifi-
cation performance by five-fold cross validation. As a results,
it achieved 98.96%.

Following [20], we used 122,328,337 photo tweets with
Japanese messages out of 988,884,946 photo tweets over all
the world collected from May 2011 to August 2013 for two
years and four months from the Twitter Stream. From these
photo tweets, we selected 1,730,441 photo tweets the mes-
sages of which include any of the name words of the 100 tar-
get foods as the first step.

In [20], in the second step, they applied a “foodness” clas-
sifier (FC) to all the selected images. After applying FC, they
applied 100-class one-vs-rest individual food classifiers. As a
result, they obtained 470,335 photos which are judged as food
photos corresponding to any of the 100 target food categories
by the processing pipeline proposed in [20]. They adopted
Fisher Vector and linear classifiers for FC and 100-class clas-
sifiers.

Instead of FC and FV-based 100-class food classifiers,
we applied the 101-class DCNN classifier, which can achieve
non-food photo detection and food photo classification simul-
taneously, to 1,730,441 Twitter photos selected by keyword
search of the food names. In this large-scale food classifi-
cation experiment, we found that DCNN was very suitable
for large-scale image data, since it takes only 0.03 seconds
to classify one food photo with GPU and totally it needed
about four hours to classify 1,730,441 photos by four GPU
machines. Finally, we obtained 581,271 food photos, which

was 1.24 times as many as the result in [20].
Due to the page limitation, we show only seven results

of the top five categories and two additional categories out of
100 food categories on Table 3, and show 40 automatically
detected photos of each of “ramen noodle”, “dipping noodle
(tsukemen)“, “sushi” and “omelet” in Figure 5. Note that the
precision rates shown in the table were estimated by subjec-
tive evaluation of random sampled 1000 photos for each cate-
gories, and the rightmost column of Table 3 shows the number
of the food photos detected by DCNN from the Twitter stream
from May 2011 till March 2015 for about four years.

Compared DCNN with FC+100 which corresponds to the
final results of [20], the number of obtained food photos and
precision are improved. Especially the number of ramen pho-
tos were increased greatly, while the number of sushi photos
were decreased. Although the precision of sushi in [20] was
low, it was improved much and became almost perfect. This is
because non-food photos representing inside sushi restaurants
and people face photos were completely excluded by food-
nonfood classification of the DCNN. Regarding other foods
than sushi, the precision rates were almost perfect. Only sev-
eral photos are found in the 1000 random sampled photos in
the evaluation time. We show some irrelevantly recognized
photos in Figure 6.

5. CONCLUSIONS

In this paper, we examined the effectiveness of pre-
training and fine-tuning of deep convolutional neural net-
work (DCNN) with a small-scale food dataset which has
around 100 training images for each of the food categories.
In the experiments, we have achieved the best classification
accuracy, 78.77% and 67.57%, for the UEC-FOOD100/256
dataset, which proved that that fine-tuning of the DCNN
pre-trained with a large number of food-related categories
(DCNN-FOOD) can boosted the classification performance
the most greatly.

In addition, we applied the food classifier employing the
best combination of the DCNN techniques to Twitter photo
data. We have achieved the great improvements on food photo
mining in terms of both the number of food photos and accu-
racy. In addition to its high classification accuracy, we found
that DCNN was very suitable for large-scale image data, since
it takes only 0.03 seconds to classify one food photo with
GPU.



Fig. 5. Examples of automatically detected food photos with
the proposed DCNN from the Twitter stream. (From the
top) ramen noodles, dipping noodles (tsukemen), sushi and
omelet.

For future work, we will implement the proposed frame-
work on mobile devices. To do that, it is needed to reduce
the amount of the pre-trained DCNN parameters which con-
sist of about 60 million floating values. Regarding Twitter
food photo mining, we plan to extend the framework to anal-
ysis food distribution and preference from the geo-spatial and
temporal aspects.
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