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Introduction: Food Recognition
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* Food recognition

* Our previous works

— MKL for food
[Joutou et al. 2009] e —
e el ———
— UEC FOOD101 b EE |
[Matsuda et al. 2012] |§ e
— Food recognition ]
on a smartphone

[Kawano et.al 2013]

-FOOD CAM  FOODCAM on Andriod
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Food segmentation is needed
for multiple food items

Meals sometimes contain multiple food items.
e So far our system needs manual segmentaion.

beef curry
937 [keal)

In this work, ~ ® [

we focus on o
food segmenta-

tion with

deep learning
method.
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Convolutional Neural Network

can be applied for various tasks 0

e Convolutional Neural Network (CNN) based
method achived the best performance in

rice

¥ o ||miso soup
. |[>otage
Jloden
|Isteamed egg
green salad

— Object classification

— Object detection

—Object Segmentation Z2=<=}
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Segmentation with ConvNet
without pixel-level annotation

* Segmentation with object saliency maps
computed by Back Propagation(BP) and GrabCut

— [Simonyan et al. 2014]
— Prepare only pre-trained CNN for food classification

— Need no pixel-level annotation (weakly supervised)
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CNN with back propagation

* SGD with BP is a common training method of CNN
* SGD adjusts weights to minimize error along -dE/dw
* BP chains derivatives(dErr/dw) from top to image

U Forward

—.I_rz W * activtions F} Max class score:

\ Q 0.856 (ramen)
dErr/dimg dErr/dw }ﬂ— Error 1

Backward
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Object saliency map:
Back Propagation to image level

* Magnitude of dE/dI indicates which pixels need to be
changed to maximize class score

* High-value pixels are expected to correspond to the object
location
* Take a max value among RGB planes of dE/dI

».»

Input image BP result (dE/dI)  Object saliency map
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Grab cut
based on object saliency map

g3

* Graph-cut based segmentation method
* Generate seeds from a saliency map

— Positive area (upper 5% : red)
— Negative area (lower 10% : blue)
— Other (yellow)
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Original Seed Grab cut result
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Improve BP segmentation

 Weak points
— separate neighbor object - hard
— detect small object - hard

* Improvement
— Rich feature CNN(RCNN) [Girshk et al 2014]

— Propose many regions and recognize all regions

— Boost precision at object detection

~ -

— Propose many regions and segment all regions
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Proposed method
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Selective Search(1) BB grouping(2) Back propagation(3)
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Saliency maps(4) Grab cut (5) NMS(6) Result
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Implementation detail

* Trained CNN

— AlexNet pre-trained ImageNet 2000 classes
e 1000 class (general) + 1000 class (food-related)
* About 2 million training images

— Fine-tuned with UEC-FOOD100

11565 images of 100 classes o=
with bounding box annotation

° _ (y 0.8
Top-1 78.5% -
° _ (y 0.7 L
Top 5 949 0 0.65 el ——-Color FV ——-RootHOG FV
Rl DCNN —DCNN-FOOD
0.6 7 FV (Color+HOG) FV + DCNN
0.5 4 -=-FV+ DCNN-FOOD  —DCNN(ft)
——DCNN-FOOD(ft)

0.5 ’
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Experiments

(1) Multiple food item images in UEC-Food 100
— 1175 images
— Have bounding boxes as ground truth (no pixel GT)

(2) PascaIVOC 2012 —
— Have pixel-level GT
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Segmentation results of UEC-Food

e Success examples

rice

miso soup
potage

oden
steamed egg
green salad

rice
sushi

Mlvegetable

tempura
mIso soup
rice ball
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Segmentation results of UEC-Food

* Failure examples

hamburger
croquette
dried fish
yakitori
Mirice ball

rice
sushi
MmIso soup
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(1) Evaluation with UEC-Food
in the bounding box Ievel

* Compared with R-CNN

* Evaluate BB detection accuracy
— R-CNN tends to extract smaller BB

— Food recognition like texture recognition:

1100 class (all)|53 class (#item >= 10)(11 class (#item >= 50)
RCNN 26.0 21.8 25.7
Ours 49.9 55.3 554
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(2) Evaluation with Pascal VOC
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in the pixel level

* PASCAL VOC 2012
— Generic object images 20 class (bus, dog, etc)

* Evaluate segmentation accuracy in pixes level

method

mean [TV on PASCAL VOC 2012

ifull],-' supervised |
SDS [4] 5l.6
FCN [9] 62.2
‘wnakly s-;upnrvisicdl
OUrs 36.4
Pedro-seg [10] 40.6
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Conclusions

* We proposed an improved method of CNN-based
segmentation.

 We applied the proposed method
to multiple food images in the UEC-FOOD dataset
as well as Pascal VOC.

* For future work, we plan to extend CNN-based
segmentation with superpixels and CRF.
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