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* Multi-class classification: one-vs-rest weights

GMM: K=64/128/256

Spatial Pyramid: 1x1 + 2x2 (=5)
(K=128 with no SP for 10k classification )

Processing over 4 cores
| In parallel
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Takes only 0.270 seconds

(We are working on DCNN-based mobile object recognition.
4bit is OK currently. We will present it at the other places.)
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assignment of weight values +2 ) - | '
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o= L2 Linear classifier S 0 . . .
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achieved the best result.
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32 bit = 2 bit
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32bit(float),64  4bit,64  2bit,128 feature extraction increased much.

'S 665669999 OSOS 606 S S S o bit numbers, the size of GMM

0.999999  (w] > 1) 2bit 10k-class classification results with 2-bit = ~,,.pination of PQ and 2-bit scalar
wi = W (Cl<w, <) FRAE=e z Wis —a quantization and Product quantization (PQ) = quantization is more effective.
—1 (w; < —1) (1)(1) —g<— w; <0 method top-1 (%) | top-5 (%) memory (Mbyte)
w;” — Lw;’ x 9n—1 + Qn_lJ, 1 . ; “:Vvl i fo no compression 11.83 25.25 292M Difference to PQ: PQ needs to refer
= scalar 11.42 24.30 18.2M a codebook table at evaluation time,
The same « is used for all the weights PQ[] 10.96 23.85 | 9.IM +7.3M (PQCB) | while the proposed method does not.
PQ[3] + scalar 10.87 23.75 9.1M + 1.8M (8bit)
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