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Introduction
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iv. Video downloading _ _ .
> Web API (e.g. Youtube API) As visual features, we extract motion features using Shots are selected from all
v. Shot segmentation ConvNet models trained on UCF-101 dataset (split 1) clusters to guarantee diversity of
> Color histogram with multi-frame stacking optical flows[4]. selection results.

Experiments and Results

Experiment 2: Action Classification

 Dataset: UCF11]2]
* Precision = average of 25-fold validation
* Training data: standard data[2] & shots

automatically obtained in Experiment 1
With standard training data [2]: 81.5%

Experiment 1: Dataset Construction mm
basketball swing
Data: Web videos (YouTube) biking 23 17 tennis_swing 47 51
) ACtI(.)n.S' 11 actions in UCF11(2] diving 35 28 trampoline jumping 54 54
* Precision rate = percentage of relevant colf swing c5 c4 volleyball spiking cq 69
shots among top 100 shots 3] horse_riding 50 42 walking 14 9
 Baseline[3]: VisualRank based method soccer_juggling 68 63 Average 44.3 41.1
golf swmg horse riding
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