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Introduction

• Pixel-wise annotation is costly

• Our goal is weakly supervised segmentation
– Train with only image-level-label
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Our contribution

• We improved backpropagation(BP)-based 
saliency maps

– By taking in some techniques used in forward-
based semantic segmentation

• We showed BP-based saliency maps can help 
object localization

– (1) We verified BP-based saliency maps can 
enhance forward-based coarse object heat maps

– (2) We achieved semantic segmentation with only 
gradient by subtracting each class gradient



ⓒ 2014 UEC Tokyo.

BP-based saliency maps 

• Propagate class signal through backpropagation

• Visualize image-level-gradient as saliency maps

– saliency maps respond to object location

[Simonyan et al. ICLR 2014]
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Visualization for Segmentation

• Visualization mean revealing object location

– Computed using classification CNN, trained on 
image labels

– Weakly supervised methods

• Simonyan et al. tried deal saliency maps as 
GrabCut seeds and achieved segmentation

– But they didn’t show numerical results
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Problems of gradient obtained by 
backpropagation

• Previous BP-based segmentation accuracy is poor 
due to following factors

– Gradient often become

sparse and noisy 

– Gradient lose semantic information

Gradient for person Gradient for train

Sparse

Noisy

Almost same
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Fully Convolutional Network(FCN)

• Replace Fc layer to Convolution layer

• FCN accept arbitrary input image size

• Output and intermediate feature maps 
become more dense
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Change points

- FCN + Global Pooling

- Input image size 

- Intermediate layer

- ReLU function in Backward
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Change result

• Saliency maps become 

more dense and clear
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To obtain semantic information

• Gradient loses semantic information

• To solve this problem

– (1) We combine forward-based feature maps

– (2) We subtract each class gradient

Gradient for person Gradient for train

Almost same
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(1) Combining forward-based 
coarse object heat maps

• We use BP-based saliency maps to enhance 
forward-based coarse object heat maps

• Forward-based feature maps

– Zoom out feature(ZOF)

• CNN + Super Pixels

• Train SVM with MIL

– Fully convolutional networks(FCN)

• Replace Fc layer to Conv layer

• Output matrix has semantic inofrmation
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(1) Experiment

• Dataset

– Pascal VOC 2012 

– 21 general object class (including background)

– 10532 training images

• Training

– We fine-tune VGG16 FCN model with image-level-label 
by global pooling

– We adopt Sigmoid cross entropy loss for multi class label

– We randomly resize input image to avoid overfitting
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(1) Experimental results

• BP-based saliency maps enhance forward-
based feature maps clearly.

Method Mean IU

FCN-MIL [ICLR 2015]  (FCN only ) 24.9

ZOF with GBP ( Ours ) 37.7

FCN with GBP (Ours ) 40.7
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Why do gradient maps 
lose semantic information?

• Large gradient regions mean 
contributed to recognition of CNN

• Concern

– Not-target class regions also respond

– Background regions don’t respond

• Does object-ness contribute CNN 
recognition even though not-
target class regions due to training 
with general object datasets?

Gradient for 
person
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(2) Subtracting each class gradient

Gradient 
for cow

Subtracting!

Gradient 
for person



ⓒ 2014 UEC Tokyo.

(2) Proposed method

• We achieved semantic segmentation with only 
gradient maps

• We obtain final regions by Dense CRF
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(2) Compare with base-line method

• Saliency maps and numerical results 

Simonyan et al. Ours

Method Mean 
IOU

Sim et al. + CRF 33.8

Ours 44.1 
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(2) Effect of subtraction

• Test for subtraction class numbers

– Note that we need N times backward computation

• Class N = 0 means no subtraction

Class N 0 1 2 3 4 5 10
Mean IU 38.2 42.2 43.5 44.1 44.2 44.0 43.7
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(2) Comparison with previous works 

* means that they use additional data

Method Mean IOU

MIL-FCN (iclr 2015) 25.7

EM-Adapt(iccv 2015) 38.2

CCNN (iccv 2015) 34.5

MIL-sppxl (cvpr2015)* 36.6

MIL-bb (cvpr2015)* 37.8

MIL-seg (cvpr2015)* 42.0

Ours w/o CRF 40.5

Ours w/ CRF 44.1
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(2) Example of Results

W/o CRF W/ CRF Ground truth
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(2) Applications

• We can adapt this method for any CNN models 

• Easy implementation!

• GitHub https://github.com/shimoda-uec/dcsm
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Conclusion

• We adapted visualization method to semantic
segmentation method

• We improved a BP-based saliency maps

• We achieved semantic segmentation using 
only gradient maps by subtracting

• We achieved the state of the art in the weakly 
supervised semantic segmentation
with Pascal VOC 2012.


