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Introduction

* Pixel-wise annotation is costly
* Our goal is weakly supervised segmentation

— Train with only image-level-label
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Our contribution

 We improved backpropagation(BP)-based
saliency maps
— By taking in some techniques used in forward-
based semantic segmentation

 We showed BP-based saliency maps can help
object localization

— (1) We verified BP-based saliency maps can
enhance forward-based coarse object heat maps

— (2) We achieved semantic segmentation with only
gradient by subtracting each class gradient
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BP-based saliency maps

* Propagate class signal through backpropagation
* Visualize image-level-gradient as saliency maps

— saliency maps respond to object location

u Snake

[Simonyan et al. ICLR 2014]
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Visualization for Segmentation

* Visualization mean revealing object location

— Computed using classification CNN, trained on
image labels

— Weakly supervised methods

* Simonyan et al. tried deal saliency maps as
GrabCut seeds and achieved segmentation

— But they didn’t show numerical results
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Problems of gradient obtalned/by
backpropagation

* Previous BP-based segmentation accuracy is poor
due to following factors

— Gradient often become | S-S
sparse and noisy

Gradient for person Gradient for train
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Fully Convolutional Network(FCN

* Replace Fc layer to Convolution layer
* FCN accept arbitrary input image size

* Output and intermediate feature maps
become more dense

512
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Change points

224

FCN + Global Pooling
Input image size
Intermediate layer
ReLU function in Backward

Ramen

Simonyan et al.

Global
pooling

Ramen
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Change result

e Saliency maps become

more dense and clear
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To obtain semantic information

e Gradient loses semantic information
* To solve this problem

— (1) We combine forward-based feature maps
— (2) We subtract each class gradient

Gradient for person Gradient for train
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(1) Combining forward-base
coarse object heat maps

* We use BP-based saliency maps to enhance
forward-based coarse object heat maps

* Forward-based feature maps

— Zoom out feature(ZOF)
* CNN + Super Pixels
* Train SVM with MIL
— Fully convolutional networks(FCN)

* Replace Fc layer to Conv layer
e Output matrix has semantic inofrmation
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(1) Experiment

* Dataset
— Pascal VOC 2012
— 21 general object class (including background)
— 10532 training images
* Training
— We fine-tune VGG16 FCN model with image-level-label
by global pooling
— We adopt Sigmoid cross entropy loss for multi class label
— We randomly resize input image to avoid overfitting
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(1) Experimental results

3

* BP-based saliency maps enhance forward-
based feature maps clearly.

FCN-MIL [ICLR 2015] (FCN only) 24.9
ZOF with GBP ( Ours ) 37.7
FCN with GBP (Ours ) 40.7
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Why do gradient maps
lose semantic information?

* Large gradient regions mean
contributed to recognition of CNN

* Concern
— Not-target class regions also respond

— Background regions don’t respond

* Does object-ness contribute CNN
recognition even though not-
target class regions due to training

o ' obi 9 5 Gradient for
wit general o jeCt atasets: person
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(2) Subtracting each class gradient

{ Y Gradient
AN for person

Subtracting!
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(2) Proposed method
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* We achieved semantic segmentation with only

gradient maps

* We obtain final regions by Dense CRF

(1)

(3)

Classification result

"Train"

(2)

"Person"
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(2) Compare with base-line method

e Saliency maps and numerical results

bottle person

Simetal.+ CRF 33.8

Ours 44.1

bicycle bicycle

Simonyan et al. Ours
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(2) Effect of subtraction

* Test for subtraction class numbers
— Note that we need N times backward computation

e Class N =0 means no subtraction

CasN 0 12 34 5 10

MeanlU 382 42.2 435 44.1 44.2 44.0 43.7
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(2) Comparison with previous works

MIL-FCN (iclr 2015) 25.7
EM-Adapt(iccv 2015) 38.2
CCNN (iccv 2015) 34.5
MIL-sppxl (cvpr2015)* 36.6
MiIL-bb (cvpr2015)* 37.8
MiIL-seg (cvpr2015)* 42.0
Ours w/o CRF 40.5
Ours w/ CRF 44.1

* means that they use additional data
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(2) Example of Results

W/o CRF W/ CRF Ground truth
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(2) Applications

* We can adapt this method for any CNN models
Easy implementation!
* GitHub https://github.com/shimoda-uec/dcsm
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Conclusion

We adapted visualization method to semantic
segmentation method

We improved a BP-based saliency maps

We achieved semantic segmentation using
only gradient maps by subtracting

We achieved the state of the art in the weakly

supervised semantic segmentation
with Pascal VOC 2012.
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