
・Multi Style Transfer (only iOS)

Please search
‘’RealTimeMultiStyleTransfer’’

・Food Rec App (both iOS/Android)
Our Project page

http://foodcam.mobi

Please search ‘’DeepFoodCam’’

x

x2

2. Proposal Contents

DeepXCam: Very Fast CNN-based Mobile Applications:
Multiple Style Transfer and Object Recognition

Ryosuke Tanno, Wataru Shimoda, Keiji Yanai The University of the Electro-Communications, Tokyo

1. Objective

・ConvDeconvNetwork[2] can treat only one fixed style.
− If transferring ten kinds of styles, we have to train ten different

ConvDeconvNetwork independently.
− This isn’t good for mobile implementation(required memory size)

・We modified [2] can train multiple styles at the same time
− adding a fusion layer and a style input stream(inspired by [1])

・Training
− We input sample images to the content stream and style images to the

style stream.(The training method is the same as [2])
・We shrunk the ConvDeconvNetwork compared to [2]

− added one down-sampling layer and up-sampling layer
− replaced 9x9 kernels with smaller 5x5 kernels in the first and last

convolutional layers
− reduced five Residual Elements into three

4. DeepStyleCam (Image Style Transfer）

3. DeepXCam for recognition (X = Food, Dog, Bird, Flower)

Multiple Style Transfer and Object Recognition App

[1] S. Iizuka et al.: Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification, SIGGRAPH, 2016.
[2] J. Johnson et al.: Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV, 2016.
[3] M. Lin et al. Network In Network, ICLR, 2014.

・ Training DCNN
− Use Network-In-Network(NIN)[3] considering mobile implementation
− Save the size of the network parameters

・ Pre-trained CNNs with ImageNet 2000 category images
(totally 2.1 million images)

・ Speeding up Conv layers ⇒ Speeding up GEMM
− computation of conv layers is decomposed into “im2col” operation

and matrix multiplications

− BLAS(iOS: Accelerate Framework, Android: OpenBLAS)
−we use the NEON instruction set which can execute four multiplications

and accumulating calculations at once.
−iOS: 2Core*4 = 8 calculation, Android: 4Core*4 = 16 calculation

Param Memory Top-5

AlexNet 62Million 248MB 95.1%

NIN(4L+BN) 5.5Million 22MB 95.2%

NIN(5L+BN) 15.8Million 63MB 96.2%

Common Features of All the Apps
・Standalone CNN mobile applications (no external server required)
・Speeding up by multi-threading and fast framework
・Recognizing any size of images by multi-scale Fully Convolutional Network
・Significant reduction in memory requirements
・Being applicable to various kinds of mobile devices

Example: 100-class food recognition
・recognition time: 26.2ms(iPhone7Plus), top-5 accuracy: 91.5%

Prepare a training image data

Train a CNN model by
Caffe (or DIGITS)

Generate a C source code by
Caffe2C automatically

Prepare a GUI code of mobile app

Generate CNN-based image
recognition app by compiling the

generated C code and the GUI code

〜flow of making mobile app〜

・Caffe2C / Chainer2C
− convert parameter files to

C source codes that run on
mobile devices

・Very fast CNN-based mobile
recognition/transfer engine
− speeding up by multi-

threading and fast framework

Developed in our lab

If you prepare training data,
you can create mobile
recognition apps in a day !!

Anyone can build very fast CNN-based mobile apps
including object recognition apps and style transfer apps.

4. Accuracy and Recognition Time

Top-1
78.8%

Top-5
95.2%

UEC-FOOD100 class recognition performance

GEMM: generic

D-3A-48

Ex. Image Size: 250x250 ，
Computation: 1,303,800,800 times(13billion)
Parameter num: 1,250,835

175ms (iPhone7+)
180ms (iPad Pro)
200ms (iPhone SE)

Reference

Network In Network [3]
・only conv layers
・no FC layers
・relatively smaller than the other

architectures
・any image size correspondence

conv_1
5x5x16
stride=1

conv_2
4x4x32
stride=2

conv_3
4x4x64
stride=2

conv_5,6
3x3x128

conv_6,7
3x3x128

conv_8,9
3x3x128 conv_7

4x4x64
stride=1/2 conv_8

4x4x32
stride=1/2

conv_9
4x4x16

stride=1/2

conv_4
4x4x128
stride=2

conv_10
5x5x3

stride=1

short-cut short-cut short-cut

conv2_1
4x4x32
stride=2

conv2_2
4x4x64
stride=2

conv2_3
4x4x64
stride=2

conv2_4
4x4x128
stride=2

Global
Average
Pooling

(1x1x128)

Fusion
layer

Duplicate
1x1x128 ⇒ NxNx128

Content
image

Style
image

ConvDeconvNet with Style Input

Unpooling
= stride 1/2

Input Image Size 227x227 200x200 180x180 160x160

iPhone 7 Plus 55.7[ms] 42.1[ms] 35.5[ms] 26.2[ms]

iPad Pro 66.6[ms] 49.7[ms] 44.0[ms] 32.6[ms]

iPhone SE 77.6[ms] 56.0[ms] 50.2[ms] 37.2[ms]

Accuracy (top-5) 95.2% 95.1% 94.1% 91.5%

Trade-Off between Accuracy and Recognition Time

We achieve

real real-
time !!

Nomal mode

Color Preserving
mode

・Adopting NIN architecture
for a recognition engine

− any size of input images
− the trade-off between

accuracy and processing time
by changing input image sizes

