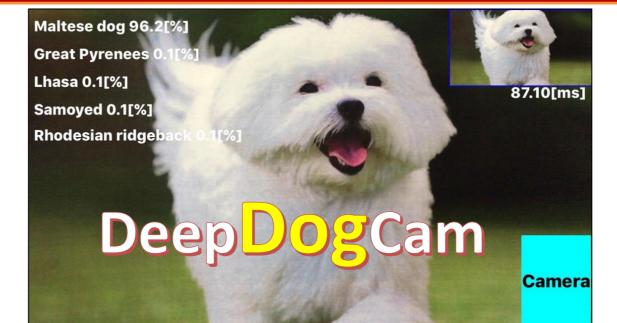
D-3A-48 DeepXCam: Very Fast CNN-based Mobile Applications: **Multiple Style Transfer and Object Recognition**

Ryosuke Tanno, Wataru Shimoda, Keiji Yanai The University of the Electro-Communications, Tokyo



1. Objective

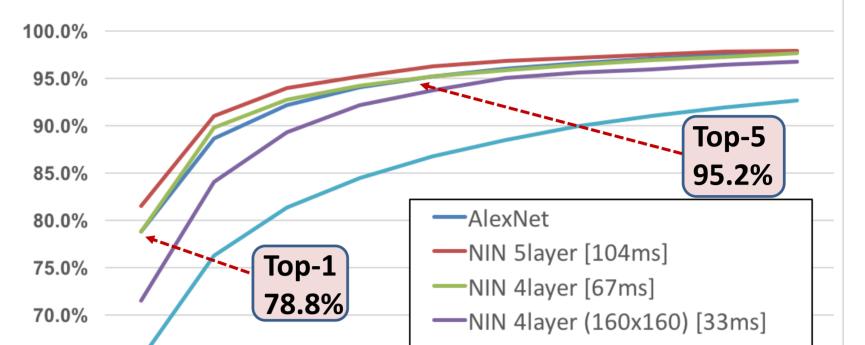
Common Features of All the Apps

- Standalone CNN mobile applications (no external server required)
- Speeding up by multi-threading and fast framework
- Recognizing any size of images by multi-scale Fully Convolutional Network
- Significant reduction in memory requirements
- Being applicable to various kinds of mobile devices

Example: 100-class food recognition

4. Accuracy and Recognition Time

UEC-FOOD100 class recognition performance

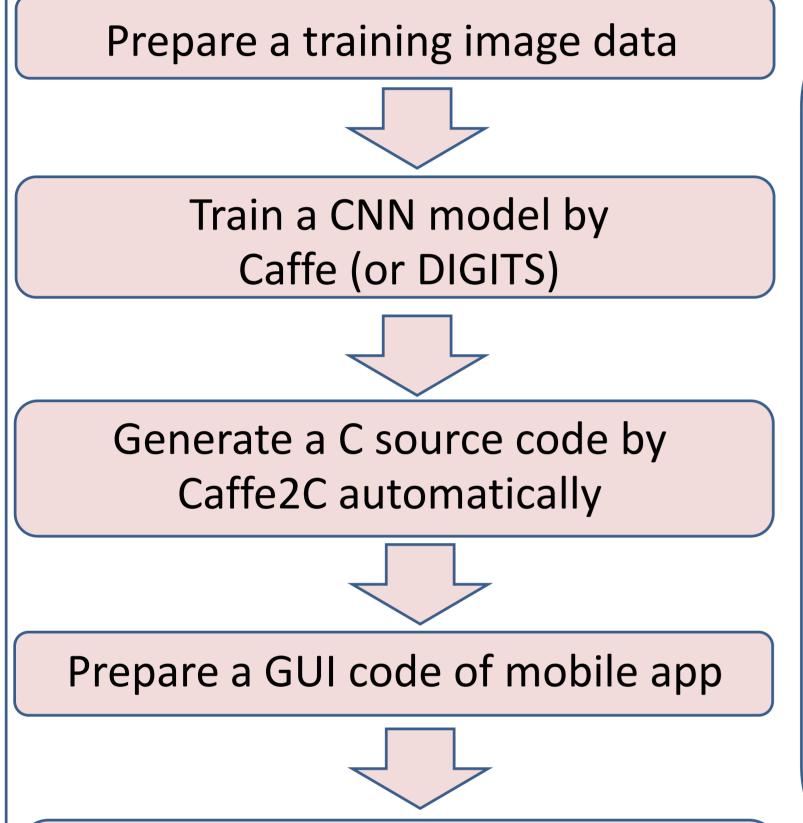


recognition time: 26.2ms(iPhone7Plus), top-5 accuracy: 91.5%

2. Proposal Contents

Anyone can build very fast CNN-based mobile apps including object recognition apps and style transfer apps.

 \sim flow of making mobile app \sim



Caffe2C / Chainer2C

Developed in our lab

- convert parameter files to C source codes that run on mobile devices
- Very fast CNN-based mobile recognition/transfer engine
 - speeding up by multithreading and fast framework
- Adopting NIN architecture for a recognition engine
 - any size of input images
 - the trade-off between
 - accuracy and processing time

Trade-Off between Accuracy and Recognition Time

Input Image Size	227x227	200x200	180x180	160x160
iPhone 7 Plus	55.7[ms]	42.1[ms]	35.5[ms]	26.2 [ms]
iPad Pro	66.6[ms]	49.7[ms]	44.0[ms]	32.6 [ms]
iPhone SE	77.6[ms]	56.0[ms]	50.2[ms]	37.2[ms]
Accuracy (top-5)	95.2 %	95.1%	94.1%	91.5%

We achieve real realtime !!

4. DeepStyleCam (Image Style Transfer)

ConvDeconvNetwork[2] can treat only one fixed style.

- If transferring ten kinds of styles, we have to train ten different ConvDeconvNetwork independently.
- This isn't good for mobile implementation(required memory size)
- We modified [2] can train multiple styles at the same time
 - adding a fusion layer and a style input stream(inspired by [1])

• Training

– We input sample images to the content stream and style images to the style stream. (The training method is the same as [2])

Generate CNN-based image recognition app by compiling the generated C code and the GUI code

by changing input image sizes *If you prepare training data,* you can create mobile recognition apps in a day !!

3. DeepXCam for recognition (X = Food, Dog, Bird, Flower)

• Training DCNN

- Use **Network-In-Network(NIN)**[3] considering mobile implementation
- Save the size of the network parameters

Network In Network [3]		Param	Memory	Top-5
only conv layersno FC layers	AlexNet	62Million	248MB	95.1%
 relatively smaller than the other architectures 	NIN(4L+BN)	5.5Million	22MB	95.2%
• any image size correspondence	NIN(5L+BN)	15.8Million	63MB	96.2%

- Pre-trained CNNs with ImageNet 2000 category images (totally 2.1 million images)
- Speeding up Conv layers ⇒ Speeding up GEMM

kernel 1

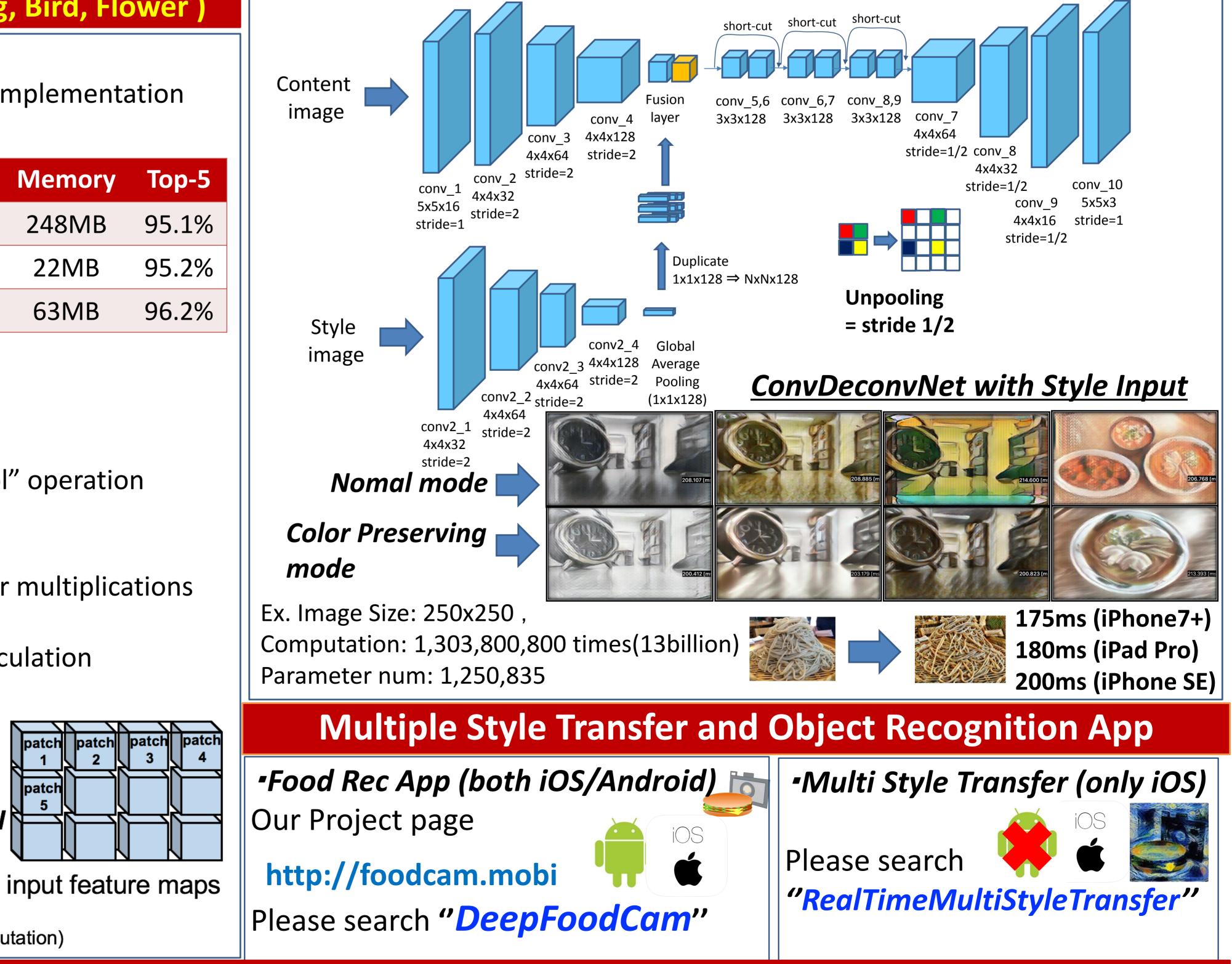
kernel 2

kernel 3

conv. kernels

- computation of conv layers is decomposed into "im2col" operation and matrix multiplications

- We shrunk the ConvDeconvNetwork compared to [2]
 - added one down-sampling layer and up-sampling layer
 - replaced 9x9 kernels with smaller 5x5 kernels in the first and last convolutional layers
 - reduced five Residual Elements into three



 BLAS(iOS: Accelerate Framework, Android: OpenBLAS) -we use the NEON instruction set which can execute four multiplications and accumulating calculations at once.

tch 2

im2col

-iOS: 2Core*4 = 8 calculation, Android: 4Core*4 = 16 calculation

GEMM: generic matrix multiplication (=conv. layer computation)

Reference

[1] S. lizuka et al.: Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification, SIGGRAPH, 2016. [2] J. Johnson et al.: Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV, 2016. [3] M. Lin et al. Network In Network, ICLR, 2014.