
Multi Style Transfer (only iOS)

Please search
ΨΩRealTimeMultiStyleTransferΩΩ

Food Rec App (both iOS/Android)
Our Project page

http:// foodcam.mobi

Please search ΨΩDeepFoodCamΩΩ

x

x2

2. Proposal Contents

DeepXCam: Very Fast CNN-based Mobile Applications:
Multiple Style Transfer and Object Recognition

RyosukeTanno, WataruShimoda, KeijiYanai The University of the Electro-Communications, Tokyo

1. Objective

ConvDeconvNetwork[2] can treat only one fixed style.
ҍIf transferring ten kinds of styles, we have to train ten different

ConvDeconvNetworkindependently.
ҍ ¢Ƙƛǎ ƛǎƴΩt good for mobile implementation(required memory size)

We modified [2] can train multiple styles at the same time
ҍadding a fusion layer and a style input stream(inspired by [1])

Training
ҍWe input sample images to the content stream and style images to the

style stream.(The training method is the same as [2])
We shrunk the ConvDeconvNetworkcompared to [2]
ҍadded one down-sampling layer and up-sampling layer
ҍ replaced 9x9 kernels with smaller 5x5 kernels in the first and last

convolutional layers
ҍ reduced five Residual Elements into three

4. DeepStyleCam(Image Style TransferṖ

3. DeepXCamfor recognition (X = Food, Dog, Bird, Flower)

Multiple Style Transfer and Object Recognition App

[1] S. Iizukaet al.: Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification, SIGGRAPH, 2016.
[2] J. Johnson et al.: Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV, 2016.
[3] M. Lin et al. Network In Network, ICLR, 2014.

Training DCNN
ҍUse Network-In-Network(NIN)[3] considering mobile implementation
ҍSave the size of the network parameters

Pre-trained CNNs with ImageNet2000 category images
(totally 2.1 million images)

Speeding up Convlayers Ҝ Speeding up GEMM
ҍcomputation of convƭŀȅŜǊǎ ƛǎ ŘŜŎƻƳǇƻǎŜŘ ƛƴǘƻ άƛƳнŎƻƭέ ƻǇŜǊŀǘƛƻƴ

and matrix multiplications

ҍBLAS(iOS: Accelerate Framework, Android: OpenBLAS)
ҍwe use the NEON instruction set which can execute four multiplications

and accumulating calculations at once.
ҍiOS: 2Core*4 = 8 calculation, Android: 4Core*4 = 16 calculation

Param Memory Top-5

AlexNet 62Million 248MB 95.1%

NIN(4L+BN) 5.5Million 22MB 95.2%

NIN(5L+BN) 15.8Million 63MB 96.2%

Common Features of All the Apps
ḱStandalone CNN mobile applications (no external server required)
ḱSpeeding up by multi-threading and fast framework
ḱRecognizing any size of images by multi-scale Fully Convolutional Network
ḱSignificant reduction in memory requirements
ḱBeing applicable to various kinds of mobile devices

Example: 100-class food recognition
ḱrecognition time: 26.2ms(iPhone7Plus), top-5 accuracy: 91.5%

Prepare a training image data

Train a CNN model by
Caffe(or DIGITS)

Generate a C source code by
Caffe2C automatically

Prepare a GUI code of mobile app

Generate CNN-based image
recognition app by compiling the

generated C code and the GUI code

Ṍflow of making mobile appṌ

ḱCaffe2C/ Chainer2C
ҍ convert parameter files to

C source codes that run on
mobile devices

ḱVery fast CNN-based mobile
recognition/transfer engine
ҍ speeding up by multi-

threading and fast framework

Developed in our lab

If you prepare training data,
you can create mobile
recognition apps in a day!!

Anyone can build very fast CNN-based mobile apps
including object recognition apps and style transfer apps.

4. Accuracy and Recognition Time

Top-1
78.8%

Top-5
95.2%

UEC-FOOD100 class recognition performance

GEMM: generic

D-3A-48

Ex. Image Size: 250x250
Computation: 1,303,800,800 times(13billion)
Parameter num: 1,250,835

175ms (iPhone7+)
180ms (iPad Pro)
200ms (iPhone SE)

Reference

Network In Network[3]
ḱonly convlayers
ḱno FC layers
ḱrelatively smaller than the other

architectures
ḱany image size correspondence

conv_1
5x5x16
stride=1

conv_2
4x4x32
stride=2

conv_3
4x4x64
stride=2

conv_5,6
3x3x128

conv_6,7
3x3x128

conv_8,9
3x3x128 conv_7

4x4x64
stride=1/2 conv_8

4x4x32
stride=1/2

conv_9
4x4x16

stride=1/2

conv_4
4x4x128
stride=2

conv_10
5x5x3

stride=1

short-cut short-cut short-cut

conv2_1
4x4x32
stride=2

conv2_2
4x4x64
stride=2

conv2_3
4x4x64
stride=2

conv2_4
4x4x128
stride=2

Global
Average
Pooling

(1x1x128)

Fusion
layer

Duplicate
1x1x128 Ҝ NxNx128

Content
image

Style
image

ConvDeconvNetwith Style Input

Unpooling
= stride 1/2

Input ImageSize 227x227 200x200 180x180 160x160

iPhone 7 Plus 55.7[ms] 42.1[ms] 35.5[ms] 26.2[ms]

iPad Pro 66.6[ms] 49.7[ms] 44.0[ms] 32.6[ms]

iPhoneSE 77.6[ms] 56.0[ms] 50.2[ms] 37.2[ms]

Accuracy (top-5) 95.2% 95.1% 94.1% 91.5%

Trade-Off between Accuracy and Recognition Time

We achieve

real real-
time !!

Nomalmode

Color Preserving
mode

ḱAdopting NIN architecture
for a recognition engine
ҍ any size of input images
ҍ the trade-off between

accuracy and processing time
by changing input image sizes

