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Objective

 Weakly supervised detection
— Use only image level annotation

— Use only single label for training
* Target is multi-food detection
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Contribution

Combine weakly supervised segmentation
method and proposal base detection approach

— Improve accuracy from weakly supervised
segmentation results

— improve computational cost from proposal base
method
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Fully supervised method

e Faster RCNN

— Use bounding box annotation
— Large annotation cost

classifier

[Ren et al. NIPS 2015]
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Weakly supervised localization

* Fully Convolutional Network + Global Max Pooling

— Train without bounding box

Adaptation layers

[Oquab et al. CVPR 2015]
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Weakly supervised segmentation

* Distinct class specific saliency maps
— Also use FCN and GMP
— Pixel-wise prediction
— Train with single label and multi label
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[Shimoda et al. ECCV 2016]
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Our method

* Train with only single label

— Existence methods assume to train with Pascal VOC
or MSCOCO which has multi label annotation.

— Most of existence datasets and web images have
only single label

— Test for multi object images

Training images
-single label

Test images
-multi label
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Background

* Weakly supervised method by training with
only single label

— Causes significant performance drop

Result of Shimoda et al. ECCV 2016 for food images
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Traditional bottom up approach

* Proposal
— previous works: RCNN, SDS
— generates around 2000 candidates
— Large computational cost
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Key idea

* Previous weakly supervised results showed low
performance

— However regions respond only food regions

— We consider CNN could transfer only food concept

-

— Regard low confidence segmentation
results as proposal candidates

— Combine weakly supervised
segmentation and proposal base

detection method.
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Food region proposal

 We regard estimated regions of upper rank
classes as proposals

* |f there are no target foods category in fact
the estimated food regions are belong to

any food reglon
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Proposals
deep-frid  Ginger Boiled Beaf  Fried Pork Chiken
chiken fried pork  beef steak vegetable  cutlet rice

S/

- -
rice Rice rice  deep-frid  Nonfood RiCE deep-frid
deep-frid chiken deep-frid  chiken
chiken chiken
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Method

* We re-recognize low confidence segmentation

result
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Sort recognition result

Estimate upper rank food region

Re-recognize estimated region

Unify recognition result by NMS
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Forward

Proposal network "\

Classification
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Difference in object detection an
food detection

* Small region recognized as food

— Similar to texture recognition

General Object Food

ground
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Data augmentation

* Food patch images * Low resolution images
— Generate by cropping — Generat by down sampling
— Separate food patches and up sampling
class from general food. — Add low resolution images

to all classes

Down Up
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Experiments

* Training
— UECFOOD 100+ Web images
— food 100 class:1000 images + non- food:10000 images
— Training without bounding box and multi label.

* Test
— UECFOOD 100 multiple food dataset
— include at least one category of UECFOOD100
— Each class image number vary
— We separate evaluation set by each class image number.
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Detection results with dlffergc

conditions
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!Datch !_ow resolution | 100class |53 class 11 class
images | images

- - 335 |35.1 |333
O - 32.2 |348 |31.8
O O 36.4 [39.9 |36.3
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Comparison of global pooling methods

GP |wm
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Average pooling Max pooling

method 100 class 53 class 11 class

Average pooling | 36,4 39.9 36.3
Max pooling (38,9 42.5 38.1
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Comparison of other proposal
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methods
Method 100 class | 53 class 11 class :I;ZZ;,S[;:; ri(;zger;it[i;n
SS 38.3 39.1 35.7 7.6 35.0
MCG 33.9 43.7 334 2.5 35.0
Ours 10 class | 33.1 33.0 33.2 0.5 1.1
Ours 20 class | 36.5 | 40.1 37.7 1.0 2.6
Ours 30 class| 38.9 | 425 38.1 1.4 3.8
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Examples
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Conclusion

* Achieved weakly supervised detection by
training only single label image

 Our method is high speed than previous
proposal base detection method
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