

Foodness Proposal for Multiple Food Detection by Training with Single Food Images Madima 2016 The University of Electro-**Communications in Japan** Wataru Shimoda, Keiji Yanai

Objective

- Weakly supervised detection
 - Use only image level annotation
 - Use only single label for training
 - Target is multi-food detection

Training image

Contribution

- Combine weakly supervised segmentation method and proposal base detection approach
 - Improve accuracy from weakly supervised segmentation results
 - improve computational cost from proposal base method

Fully supervised method

- Faster RCNN
 - Use bounding box annotation
 - Large annotation cost

Weakly supervised localization

- Fully Convolutional Network + Global Max Pooling
 - Train without bounding box

[Oquab et al. CVPR 2015]

Weakly supervised segmentation

- Distinct class specific saliency maps
 - Also use FCN and GMP
 - Pixel-wise prediction
 - Train with single label and multi label

[Shimoda et al. ECCV 2016]

Our method

- Train with only single label
 - Existence methods assume to train with Pascal VOC or MSCOCO which has multi label annotation.
 - Most of existence datasets and web images have only single label
 - Test for multi object images

Training images -single label

Test images -multi label

Background

- Weakly supervised method by training with only single label
 - Causes significant performance drop

Result of Shimoda et al. ECCV 2016 for food images

Traditional bottom up approach

- Proposal
 - previous works: RCNN, SDS
 - generates around 2000 candidates
 - Large computational cost

Key idea

- Previous weakly supervised results showed low performance
 - However regions respond only food regions
 - We consider CNN could transfer only food concept
 - Regard low confidence segmentation
 - results as proposal candidates
 - Combine weakly supervised
 segmentation and proposal base
 detection method.

Food region proposal

- We regard estimated regions of upper rank classes as proposals
- If there are no target foods category in fact, the estimated food regions are belong to any food region

Proposals

rice

Rice deep-frid chiken deep-frid chiken

rice

Non food

Rice de deep-frid ch chiken Green salada

deep-frid chiken

Method

• We re-recognize low confidence segmentation result

Overview

- Sort recognition result
- Estimate upper rank food region
- Re-recognize estimated region
- Unify recognition result by NMS

Difference in object detection and food detection

- Small region recognized as food
 - Similar to texture recognition

Data augmentation

- Food patch images
 - Generate by cropping
 - Separate food patches class from general food.
- Low resolution images
 - Generat by down sampling and up sampling
 - Add low resolution images to all classes

Experiments

- Training
 - UECFOOD 100 + Web images
 - food 100 class:1000 images + non- food:10000 images
 - Training without bounding box and multi label.
- Test
 - UECFOOD 100 multiple food dataset
 - include at least one category of UECFOOD100
 - Each class image number vary
 - We separate evaluation set by each class image number.

Detection results with different conditions

Patch images	Low resolution images	100 class	53 class	11 class
—		33.5	35.1	33.3
0		32.2	34.8	31.8
0	0	36.4	39.9	36.3

Comparison of global pooling methods

iviax poolin <u>c</u>	Max	pool	ling
-----------------------	-----	------	------

method	100 class	53 class	11 class
Average pooling	36.4	39.9	36.3
Max pooling	38.9	42.5	38.1

Method	100 class	53 class	11 class	Proposal speed [s]	recognition speed [s]
SS	38.3	39.1	35.7	7.6	35.0
MCG	33.9	43.7	33.4	2.5	35.0
Ours 10 class	33.1	33.0	33.2	0.5	1.1
Ours 20 class	36.5	40.1	37.7	1.0	2.6
Ours 30 class	38.9	42.5	38.1	1.4	3.8

Examples

Conclusion

- Achieved weakly supervised detection by training only single label image
- Our method is high speed than previous proposal base detection method