
Efficient Mobile Implementation of
A CNN-based Object Recognition System

Keiji Yanai Ryosuke Tanno Koichi Okamoto
Department of Informatics,

The University of Electro-Communications, Tokyo
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 JAPAN

{yanai,tanno-r,okamoto-k}@mm.inf.uec.ac.jp

ABSTRACT
Because of the recent progress on deep learning studies, Con-
volutional Neural Network (CNN) based method have out-
performed conventional object recognition methods with a
large margin. However, it requires much more memory and
computational costs compared to the conventional methods.
Therefore, it is not easy to implement a CNN-based object
recognition system on a mobile device where memory and
computational power are limited.
In this paper, we examine CNN architectures which are

suitable for mobile implementation, and propose multi-scale
network-in-networks (NIN) in which users can adjust the
trade-off between recognition time and accuracy. We imple-
mented multi-threaded mobile applications on both iOS and
Android employing either NEON SIMD instructions or the
BLAS library for fast computation of convolutional layers,
and compared them in terms of recognition time on mobile
devices. As results, it has been revealed that BLAS is better
for iOS, while NEON is better for Android, and that reduc-
ing the size of an input image by resizing is very effective
for speedup of CNN-based recognition.

Keywords
convolutional neural network, mobile implementation, network-
in-network, iOS, Android

1. INTRODUCTION
Due to the recent progress of the studies on deep learning,

convolutional neural network (CNN) based methods have
outperformed conventional methods with a large margin.
Therefore, CNN-based recognition should be introduced into
mobile object recognition. However, since CNN computa-
tion is usually performed on GPU-equipped PCs, it is not
easy for mobile devices where memory and computational
power is limited.
In this paper, we explore the possibility of CNN-based

object recognition on mobile devices, especially on iOS and
Android devices including smartphones and tablets in terms
of processing speed and required memory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15 - 19, 2016, Amsterdam, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2967243

First, we compare the CNN architectures for generic object
recognition and select Network-in-Network (NIN) [1] as a ba-
sic architecture for our mobile CNN implementation. Next,
we explore weight compression of NIN by Product Quanti-
zation (PQ) [2]. Regarding processing time, we describe fast
mobile implementation and multi-scale recognition which al-
lows users to adjust the trade-off between recognition time
and accuracy. In addition, we modify the standard NIN ar-
chitecture by introducing batch normalization (BN) [3] and
adding layers to raise recognition performance. Finally we
examine the above-mentioned points by the experiments.

To summarize our contributions in this paper, they are as
follows:
• We compare basic CNN architectures and show the ef-

fectiveness of network-in-network for mobile implemen-
tation.

• We show multi-scale recognition of NIN is helpful to
balance recognition time against accuracy.

• We have implemented NIN-based CNN recognition en-
gines on both iOS and Android which can run in 32.6
ms in the fastest setting.

2. RELATED WORK
Recently the optional package of the OpenCV 3.1 library1

distributed as “contrib” modules experimentally has sup-
ported a DNNmodule in which the network trained in Caffe [4]
and Torch-7 [5] can be deployed. Since OpenCV supports
both iOS and Android, anyone can implement a mobile deep
learning system easily with the DNN module. However, no
special optimization on the DNN module was carried out
for mobile devices. To run AlexNet on iOS or Android it re-
quires more than one second and much storage to store the
trained weights. For example, 60 million weights are needed
for AlexNet.

An open-source mobile deep learning software, DeepBe-
liefSDK2 is optimized for Android and iOS where the BLAS
library is employed on iOS and NEON SIMD instruction
sets are used on Android. It took about 130 ms for one-time
recognition on iPad Pro. In addition, to reduce memory
to store the weights, one weight is represented in one byte
by quantization [6]. Its drawback is that it is difficult to
change CNN models from the built-in AlexNet to the oth-
ers, since training function or importing function from other
frameworks is not provided.

As academic studies, many researchers try to compress
weights and reduce computational costs. Gong et al. [7] pro-
posed to apply Product Quantization (PQ) [2] to convnets

1http://opencv.org/
2https://github.com/jetpacapp/DeepBeliefSDK

to compress their weights. However, they applied PQ-based
compression to only fully connected (FC) layers in AlexNet
and not to convolutional (conv) layers. Yang et al. [8] also
proposed Fastfood transform and applied it for compression
of FC layers in Alexnet, and Han et al. [9] proposed a method
which combines pruning, quantization and Huffman Encod-
ing, and applied it to both conv and FC layers in Alexnet
and VGG-16. Courbariaux et al. [10] proposed a method to
binarize network weights to reduce computational costs and
required memory.
However, most of the authors did not implement their

proposed method on actual mobile devices. Exceptionally,
Wu et al. [11] implemented and tested Compressed AlexNet
on an Android smartphone. However, it took 0.95 seconds
for one-time recognition, which was much slower than our
implementation.
In this paper, we aim to implement a practical CNN-based

object recognition engine on both iOS and Android in terms
of computational speed and required memory to store CNN
weights.
Before the deep learning era got started, several local-

feature-based mobile recognition systems were proposed. For
example, Kawano et al. [12] proposed a mobile food recog-
nition system which can classify 100 food classes in only
0.065 seconds employing Fisher Vector (FV) [13]. To real-
ize fast recognition, they employed weight compression tech-
nique [14] and multi-threading implementation. This system
was called“FoodCam”which was implemented as an interac-
tive application taking advantage of their very quick recog-
nition. One of our objectives in this paper is implementing
such a fast mobile recognition system using a state-of-the-
art CNN architecture. We propose“DeepFoodCam”which is
a CNN-version of “FoodCam” as an example of CNN-based
mobile recognition systems in the last part of this paper.

3. CNN ARCHITECTURE
As basic CNN architectures for object recognition, AlexNet [15],

Network-in-Network (NIN) [1], GoogLeNet [16] and VGG-
16 [17] are commonly used. For comparison, we show the
basic characteristics of their CNN architecture regarding the
number of layers, weights and computation on convolutional
(conv) layers and fully-connected (FC) layers in Table 1 3.
AlexNet is the first large-scale object recognition CNN

which consists of 6 conv layers and 3 FC layers, while VGG-
16 is a deeper version of AlexNet which has 13 conv lay-
ers and 3 FC layers. FC layers need a large number of
weights, 59M for AlexNet and 129M for VGG-16. Although
GoogLeNet also has a deep architecture consisting of 21 conv
layers, it has only one FC layers with 1M parameters. While
VGG-16 is a deep and high-performance but simple archi-
tecture which uses only 3×3 conv layers, GoogLeNet is quite
complicated which consists of many “Inception modules”
each of which consists of 5x5, 3x3, 1x1 conv layers and pool-
ing layers.
For mobile implementation, these three architectures are

not appropriate, because AlexNet and VGG-16 have too
much parameters and GoogLeNet is a complicated archi-
tecture which is difficult for effective parallel implementa-
tion for mobile devices. Unlike these three architectures,
Network-in-Network (NIN) has a simple architecture con-
sisting of no FC layers and 12 conv layers. Instead of FC lay-
ers, NIN adopts Cascaded Cross Channel Parametric Pool-
ing (CCCP Pooling) which is implemented by two consec-

3We referred to the open models at Caffe Model Zoo
(https://github.com/BVLC/caffe/wiki/Model-Zoo).

Table 1: Comparison of CNN Architectures regard-
ing the number of layers, weights and computation
(multiplication). “ImageNet” means the top-5 error
rate for the ImageNet Challenge data with a single
model.

model Alex VGG-16 GoogLeNet NIN
layer 5 13 21 12

conv weights 3.8M 15M 5.8M 7.6M
comp. 1.1B 15.3B 1.5B 1.1B
layer 3 3 1 0

FC weights 59M 124M 1M 0
comp. 59M 124M 1M 0

TOTAL weights 62M 138M 6.8M 7.6M
comp. 1.1B 15.5B 1.5B 1.1B

ImageNet top-5 err. 17.0% 7.3% 7.9% 10.9%

utive 1 conv layers just after 3 × 3 or larger conv layers.
The number of the total parameters of NIN are 7.6 million,
and the number of the multiplication is 1.1 billion, which is
relatively smaller than the other architectures.

Given these characteristics of NIN, we have decided to
adopt NIN as a basic architecture of mobile implementation
in this work. In addition, NIN can accept an image of any
size as an input of the network by using global pooling in-
stead of fixed-size pooling in the last pooling layer, because
NIN is a CNN without FC layers. This is very helpful for
mobile implementation, because users can adjust the balance
between recognition speed and accuracy by their preference
without changing the network weights. We will refer this
point later.

4. COMPRESSION OF NIN WEIGHTS
In this paper, we adopt Network-in-Network (NIN) [1] as

a basic CNN architecture, because both the amount of the
parameters and computational costs are relatively smaller.
However, 30 MByte at least is still needed to store 7.6 million
weights in 32-bit single floating point representation. Then
we introduce weight compression.

Inspired by Gong et al. [7], we apply product quantiza-
tion (PQ) [2] for weight compression of conv layers of NIN,
although Gong et al. applied PQ-based compression not to
conv layers but only to FC layers in AlexNet. By the ex-
periments, we confirm the effectiveness of PQ-based weight
compression for conv layers of NIN.

5. FAST IMPLEMENTATION ON MOBILE
DEVICES

In this work, we focus on iOS and Android devices in-
cluding smartphones and tablets as target devices for mobile
implementation.

For fast mobile implementation, it is essential to use (1)
Multi-threading, (2) SIMD instruction sets and (3) iOS Ac-
celerate Framework (only for iOS). In addition, it is possible
to reduce computational costs by devising CNN architec-
tures, computation algorithms, and introducing approxima-
tion into CNN computation. As the other easier way to
reduce computational costs, we can reduce the size of an
input image.

In this section, we describe (1), (2) and (3) which we con-
sider are prerequisite for fast implementation of CNNs on
mobile devices. Since so many works have been published
regarding reducing computational costs of CNNs as men-
tioned in Sec.2, we like to keep introducing them for our
future work. Instead, to verify the effectiveness of reducing

Figure 1: Computation of conv layers with “im2col”
and “matrix multiplication”.

of the size of an input image for speedup, we will exam-
ine the relations between input image sizes and recognition
accuracy in the next section.
Because NIN has only conv layers as the layers having

trained parameters, we need efficient mobile implementation
of feed-forward computation of convolutional layers. In gen-
eral, computation of conv layers is decomposed into“im2col”
operation and matrix multiplications. In im2col operation,
each patch to apply a conv kernel to is extracted from a
given feature map, and place them in one column of a patch
matrix, while each conv kernel is also placed in one row of
a kernel matrix (See Figure 1). After that, we can obtain
the output feature maps of the target conv layer by mul-
tiplying the kernel matrix by the im2col patch matrix. In
general, this generic matrix multiplication (GEMM) is very
time-consuming, since both matrices are large (sometime
larger than 1000 × 1000). Although we can use GPU for
fast GEMM calculation in case of PC or servers, for mobile
devices we need to use CPU as effective as possible.
(1) Multi-threading: Most of the recent CPU on mobile
devices have four CPU cores. By using four cores effectively,
four times speedup can be expected. In our implementation,
to use four CPU cores by multi-threading, we divide a kernel
matrix into four sub-matrices along the row. As shown in
Table 1, the number of conv kernels are usually multiples
of four. Four GEMM operations are carried out in parallel.
Note that most of the CPUs on iOS devices including the
latest APPLE CPU, A9X, have only two cores. Therefore,
only twice speedup is expected with multi-threading for iOS
devices at most.
(2) SIMD instruction: Most of the recent mobile devices
are equipped with ARM-based CPUs except for some de-
vices having Intel Atom. Therefore, we focus only on NEON
which is a SIMD instruction set of ARM processors. Among
the NEON instruction set, we use “vmla.f32” which can ex-
ecute four multiplications and accumulating calculations at
once. This operations are frequently used for GEMM cal-
culation. NEON instructions can be carried out in each
CPU core independently. Therefore, by combining multi-
threading and NEON, 16 times speedup for Android and 8
times for iOS are expected at most.
(3) iOS Accelerate Framework: In case of iOS, iOS Ac-
celerate Framework which includes highly optimized BLAS
(Basic Linear Algebra Subprograms) library is available. The
GEMM function in the BLAS library (“cblas sgemm”) can
be used for GEMM operations. BLAS in iOS probably uses
NEON instructions inside the library. However, the detail is
not disclosed. (2) and (3) are alternative to each other. We
will compare them in the experiments.

Table 2: The original and variants of the NIN archi-
tectures.

layer no. (1) original NIN (2) 4layers + BN (3) 5layers + BN
1 11x11x96 conv1 11x11x96 conv1 11x11x96 conv1
2 1x1x96 cccp1 1 1x1x96 cccp1 1 1x1x96 cccp1 1
3 1x1x96 cccp1 2 1x1x96 cccp1 2 1x1x96 cccp1 1
4 5x5x256 conv2 3x3x256 conv2 1 3x3x256 conv2 1
5 1x1x256 cccp2 1 3x3x256 conv2 2 3x3x256 conv2 2
6 1x1x256 cccp2 2 1x1x256 cccp2 1 1x1x256 cccp2 1
7 3x3x384 conv3 1x1x256 cccp2 2 1x1x256 cccp2 2
8 1x1x384 cccp3 1 3x3x384 conv3 3x3x384 conv3
9 1x1x384 cccp3 2 1x1x384 cccp3 1 1x1x384 cccp3 1

10 3x3x1024 conv4 1x1x384 cccp3 2 1x1x384 cccp3 2
11 1x1x1024 cccp4 1 3x3x768 conv4 3x3x768 conv4
12 1x1xN cccp4 2 1x1x768 cccp4 1 1x1x768 cccp4 1
13 avg. pool 1x1xN cccp4 2 1x1x768 cccp4 2
14 sofmax avg. pool 3x3x1024 conv5
15 softmax 1x1x1024 cccp5 1
16 1x1x1024 cccp4 2
17 avg. poling
18 softmax

weights 7.6Million 5.5Million 15.8Million
computation 1.1Billion 1.2Billion 1.7Billion

6. MULTI-SCALE RECOGNITION FOR AD-
JUSTING TIME AND ACCURACY

The original NIN is designed so that the size of an input
image of NIN is 227 × 227. However, by using global aver-
age pooling which accepts feature maps of any size in the
final pooling layer, NIN can accept input images of any size,
since NIN has no FC layers. This is a helpful characteristics
for mobile implementation, since users can adjust processing
speed by changing the size of an input image without chang-
ing CNN weights. The smaller the size of an input image
becomes, the faster the NIN can recognize it. Instead, the
accuracy will be degraded.

In the experiments, we examine the trade-off between
recognition time and accuracy with input images of several
sizes and two kinds of methods to generate smaller images.
One is cropping smaller images from the original one without
resizing, while the other is resizing original one to smaller
images.

7. EXTENSION OF THE NIN ARCHITEC-
TURE

The original NIN consists of four repetitive small struc-
tures each of which includes one conv layer and Cascaded
Cross Channel Parametric Pooling (CCCP) layers which are
equivalent to two consecutive 1×1 conv layers. When train-
ing, we added drop-out [18] to the two last 3× 3 conv layers
to make training easier.

Recently batch normalization (BN) [3] has been proposed,
which can accelerate training without drop-out and make
training of deeper networks possible. Then, we build two
variant models of NIN by adding BN layers just after all the
conv/cccp layers and one repetitive structures. One is “4-
layers + BN” and the other is “5-layers + BN”. In addition,
we replaced 5x5 conv with two 3x3 conv layers, and reduced
the number of kernels in conv 4 from 1024 to 768. The de-
tails of the original NIN and two variants are shown in Table
2. We will compare them regarding recognition performance
in the experiments

Note that ReLUs (Rectified Linear Unit) exists just after
all the conv/cccp layers, and in case of (2) and (3), BN
(batch normalization) layers also exists just after all the
conv/cccp layers and before ReLU, although they are not
shown in the table.

Table 3: Recognition time [ms] on mobile devices.

NIN(BLAS) NIN(NEON) NIN4 NIN5 D-Belief
iPad Pro 66.0 221.4 66.6 103.5 131.9
iPhone SE 79.9 251.8 77.6 116.6 137.7

Galaxy Note 3 1652 251.1 - - -

Table 4: Recognition accuracy (top-1/5) [%] of the
trained models.

ImageNet2000 UEC-FOOD
model top-1 top-5 top-1 top-5 weights

FV(HOG+color)[12] - - 65.3 86.7 5.6M
AlexNet 44.5 67.8 78.8 95.2 62M
NIN 41.9 65.9 75.0 93.7 7.6M

NIN(4layers+BN) 39.8 65.0 77.9 94.6 5.5M
NIN(5layers+BN) 45.8 70.5 80.8 95.4 15.8M

8. EXPERIMENTS

8.1 Implementation and Training
We have implemented a mobile deep learning framework

which works on both iOS and Android. The framework sup-
ports only deployment of trained CNN models. We used
Caffe [4] for training of CNN models on a PC with two
Titan-X GPUs, and converted trained model files for our
framework.
In the experiments, we mainly used the augmented UEC-

FOOD100 dataset [19, 20] which is a 100-class food cate-
gories dataset containing at most 1000 food photos for each
food class, because our objective is implementing practi-
cal CNN-based recognition engines. Following [20], before
training with the food dataset, we pre-trained CNNs with
ImageNet 2000 category images (totally 2.1 million images)
which consisted of ILSVRC2012 1000 category images and
1000 food-related categories selected from all the 21,000 Im-
ageNet categories.
For evaluation, we used 20% of ImageNet 2000 images

and the images in the fold no.0 of the official split of UEC-
FOOD100 as test images of ImageNet 2000 and augmented
UEC-FOOD100, respectively. In the experiments, we mea-
sured processing time on mobile devices, while we evaluated
recognition accuracy of the trained CNNs on a PC.

8.2 Recognition Time on Mobile Devices
We measured recognition times on iPad Pro 9.7inch (iOS

9.3), iPhone SE (iOS 9.3) and Galaxy Note3 (Android 5.0).
We executed recognition more than twenty times and calcu-
lated the median of all the measured times for evaluation.
Table 3 shows the processing time for one-time recognition
with NIN with BLAS, NIN with NEON, NIN-4layers with
BLAS, NIN-5layers with BLAS, and DeepBeliefSDK with
BLAS (for comparison).
From these results, the BLAS library on iOS which was

implemented as a part of iOS Accelerate Framework was
very effective for speedup, while the OpenBLAS library which
we used as BLAS implementation for Android was too slow.
NEON implementation was moderate, although it was three
times as slow as iOS BLAS implementation. For more speedup
on Android, improvement of CNN models and computation
such as reducing weights and approximation of CNN com-
putation will be needed. This is one of our future works.
Although DeepBeliefSDK also employs BLAS, our NIN(BLAS)

was twice as fast as it. One of the possible reason is that we
used multi-threading, while they did not use.
For reference, we show the recognition accuracy for Ima-

geNet2000 and UEC-FOOD with Fisher Vector (FV) based
conventional method, AlexNet, NIN and two variants in Ta-

Table 5: Time [ms] and top-1/5 accuracy [%] with
images of various size.

(A) 4-layer + BN
Time 227x227 200x200 180x180 160x160

iPad Pro 66.6 49.7 44.0 32.6
iPhone SE 77.6 56.0 50.2 37.2

Accuracy top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
resize 78.8 95.2 77.3 95.1 76.0 94.1 69.3 91.5
crop 78.8 95.2 75.8 93.9 72.0 92.1 63.0 87.7

multi-resize 74.7 93.9 74.0 94.6 74.4 94.7 71.5 93.7
multi-crop 74.7 93.9 70.8 92.2 69.8 92.2 61.4 87.2

(B) 5-layer + BN
Time 227x227 200x200 180x180 160x160

iPad Pro 103.5 71.9 61.1 46.6
iPhone SE 116.6 82.9 68.6 53.4

Accuracy top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
resize 81.5 96.2 80.2 95.7 78.4 94.9 72.0 91.4
crop 81.5 96.2 78.3 95.1 75.1 93.6 65.3 87.3

multi-resize 78.2 95.3 78.2 95.1 78.2 95.6 75.1 93.8
multi-crop 78.2 95.3 75.8 93.2 73.1 92.2 66.3 88.3

Table 6: Accuracy (top-1/5) [%] with PQ-based
weight compression.

raw(32bit) 8bit 4bit 4bit(pair) 2bit(pair)
memory 30.4MB 7.6MB 3.8MB 3.8MB 1.9MB
top-1 75.0 74.5 66.8 72.9 50.3
top-5 93.7 93.5 89.7 92.9 78.1

ble 4. All the CNN based method outperformed the FV-
based result [12] with a large margin. Both of two variants of
NIN outperformed the original NIN except for NIN-4layers
on ImageNet2000. Reducing the number of the kernels in
the last conv layers for NIN-4layers is one of the possible
reasons of this performance loss. NIN-5layers outperformed
AlexNet, which showed that making a CNN deeper was ef-
fective for performance improvement.

8.3 Multi-scale Recognition
The advantage of NIN is that it can accept images of any

size as input images. Table 5 shows relation between im-
age size and time/accuracy. We used two methods to ob-
tain smaller images, resizing and cropping. In addition, we
trained NIN-4layers and NIN-5layers in multi-scale training
where we resized training images with random magnification
rate from 0.7 to 1.0 during training of the NIN models.

For the results, the processing time was proportional to
the number of the pixels of an image. For example, in case of
160x160, the time was reduced by half. Although reducing
the size from 227x227 to 180x180 brought only 2.8 point
and 3.1 point accuracy loss for NIN-4layers and NIN-5layers,
respectively, the processing time was reduced by two third.

As a method to reduce the size of an input image, resizing
is much better than cropping in terms of accuracy.

The multi-scale trained models were not as effective as
the normal models trained with 227x227 images except for
160x160 input images. The results by the multi-scale trained
models are relatively uniform regardless the size of an input
image, although the accuracy for the full-sized image was
degraded compared to the normal models.

Until 180x180, reducing the size of an input image is effec-
tive and easy way to adjust the trade-off between accuracy
and processing time.

8.4 Weight Compression
We applied Product Quantization (PQ) [2] to compress

CNN weights for NIN to reduce required memory on mo-
bile devices. Table 6 shows accuracy from no compres-

Figure 2: Screen-shots of food recognition app (left)
and 2000-class recognition app (right).

sion to 1/16 compression. For “8bit” and “4bit”, we applied
quantization to each single element, while “4bit(pair)“ and
“2bit(pair)”means that we applied quantization to each pair
of elements. Performance loss in case of“4bit(pair)”was only
2.1 point, although it brought 1/8 compression. From these
results, PQ-based compression is helpful for NIN as well.

8.5 Mobile Applications
We have implemented two kinds of mobile CNN-based im-

age recognition apps on iOS, a food recognition app, “Deep-
FoodCam”, and a 2000-class object recognition app, which
employ NIN trained with the augmented UEC-FOOD100
dataset including a additional non-food class, and NIN trained
with 2000 ImageNet Food dataset, respectively. Both can
recognize a 227x227 photo in 66ms and a 160x160 in 33ms.
We have released the iOS-version food recognition appli-

cation on Apple App Store. Please search for “DeepFood-
Cam”. The movies where two apps are working on iOS can
be seen at our project page, http://foodcam.mobi/.

9. CONCLUSIONS
We proposed a mobile implementation of CNN which is

based on Network-in-Network (NIN) [1]. For reducing the
weights we examined PQ-based compression, while for fast
recognition we adopted multi-threading and SIMD instruc-
tion or highly-optimized iOS Accelerate Framework for com-
putation of convolutional layers. In addition, we examined
NIN-based multi-scale recognition which enabled us to ad-
just the trade-off between time and speed. As results, it
was turned out that reducing the size of input images was
very effective. In addition, for a 160 × 160 input image, we
achieved 32.6 ms recognition on iPad Pro, which is equiva-
lent to the “real” real-time speed.
For future work, we plan to apply our mobile framework

into real-time CNN-based mobile image processing such as
super-resolution, semantic segmentation and neural style-
transfer [21].

10. REFERENCES
[1] M. Lin, Q. Chen, and S. Yan, “Network in network,”

in Proc. of International Conference on Learning
Represenation Conference Track, 2014.

[2] H. Jegou, M. Douze, and C. Schmid, “Product
quantization for nearest neighbor search,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[3] S. Ioffe and C. Szegedy, “Batch normalization:
Accelerating deep network training by reducing
internal covariate shift,” in Proc. of International
Conference on Machine Learning, pp. 448–456, 2015.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell,
“Caffe: Convolutional architecture for fast feature
embedding,” in Proc. of ACM International
Conference Multimedia, pp. 675–678, 2014.

[5] R. Collobert, K. Kavukcuoglu, and C. Farabet,
“Torch7: A matlab-like environment for machine
learning,” in Proc. of NIPS Workshop on BIGLearn,
2011.

[6] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving
the speed of neural networks on CPUs,” in Proc. of
NIPS Workshop on Deep Learning and Unsupervised
Feature Learnings, 2011.

[7] Y. Gong, L. Liu, M. Yang, and L. Bourdev,
“Compressing deep convolutional networks using
vector quantization,” arXiv preprint arXiv:1412.6115,
2014.

[8] Z. Yang, M. Moczulski, M. Denil, N. de Freitas,
A. Smola, L. Song, and Z. Wang, “Deep fried
convnets,” in Proc. of IEEE International Conference
on Computer Vision, pp. 1476–1483, 2015.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning,
trained quantization and huffman coding,” in Proc. of
International Conference on Learning Representation,
2016.

[10] M. Courbariaux, Y. Bengio, and J. P. David,
“BinaryConnect: Training deep neural networks with
binary weights during propagations,” in Advances in
Neural Information Processing Systems, pp.
3123–3131, 2015.

[11] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng,
“Quantized convolutional neural networks for mobile
devices,” arXiv preprint arXiv:1512.06473, 2015.

[12] Y. Kawano and K. Yanai, “Foodcam: A real-time food
recognition system on a smartphone,”Multimedia
Tools and Applications, vol. 74, no. 14, pp. 5263–5287,
2015.

[13] F. Perronnin, J. Sánchez, and T. Mensink, “Improving
the fisher kernel for large-scale image classification,” in
Proc. of European Conference on Computer Vision,
2010.

[14] Y. Kawano and K. Yanai, “Ilsvrc on a smartphone,”
IPSJ Transactions on Computer Vision and
Applications, vol. 6, pp. 83–87, 2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems, 2012.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” in
Proc. of IEEE Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep
inside convolutional networks: Visualising image
classification models and saliency maps,” in Proc. of
International Conference on Learning Represenation
Workshop Track, 2014.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[19] Y. Matsuda, H. Hoashi, and K. Yanai, “Recognition of
multiple-food images by detecting candidate regions,”
in Proc. of IEEE International Conference on
Multimedia and Expo, pp. 1554–1564, 2012.

[20] K. Yanai and Y. Kawano, “Food image recognition
using deep convolutional network with pre-training
and fine-tuining,” in Proc. of ICME Workshop on
Multimedia for Cooking and eating Activities (CEA),
2015.

[21] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses
for real-time style transfer and super-resolution,”
arXiv preprint arXiv:1603.08155, 2016.

