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Caffe2CA Framework for Easynplementation
of CNNbased Mobile Applications

Ryosukelanno and Keiji Yanal

Department of Informatics,
The University of Electr@ommunications, Tokyo

'The University of Electro-Communications

2016 UEC Tokyo.



(5

=Y
) —
WA h C € Umversity o ectro-vommunicatnons
mﬂth:‘, UEC The University of Electro-C icati
ANNIVERSARY |\

—¢

=SINCE1918 =

1. INTRODUCTION
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" Deep Learning(DNN,DCNN,CNN)

A DeeplLearning achievetbmarkableprogress
I E.g. Audio Recognition, Natural Language Processing,

A Especially, in Image Recogniti@eep Learning gave
the best performance

I Outperform even humans such as recognition of 1000
object(He+, Delving deep into rectifier, 2015)
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Deep Learning Framework

A Many Deep LearningrBmework have emerged
I E.g. CaffeTensorFlow, Chainer

Caffe ¥ .o

Tensor Chainer
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What isCaffe?
Convolution Architecture For Feature Extraction(CAFFE

Open Framework, models and examples for Deep Learr
A Focus orCompuerVision
A Pure C++/CUDA architecture for deep learning
A Command line, Python MATLAB interface
A Fastest processing speed

A Caffe is themost popular frameworkin the world LC

Caffe =
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Bring to CNN to Mobile

A There are many attempts to archive CNN on the
mobile

I Require a higltomputational powerand memory

» High Computational Poweand Memory are Bottleneck!!
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How to train a model by caffe?

A 3files are required fofTraining-> Output:Model
I 3files:Network definition, Mean, Label

Training Output
Caffe :E(Daffemod;e)

~
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Usethe 4 Files
by Caffeon the Mobile

A We currentlyneed to useOpenC\MDNNmodule
I not optimized for the mobiledevices
I their execution speed islatively slow

Caffet CO B3

OpenCV

BNetwork]
bMean
blabel
bBModel .

> 4 files
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Objective

A We create aCaffe2Gvhichconverts the CNN model
definition files and theparameter files trained by
Caffeto a single C language codleat can run on
mobiledevices

BNetwork
CMean Caffe2C
Caffe<® > 4 files === Single C code
blLabel
bModel

A Caffe20nakes it easy to use deep learning on the C
language operatingnvironment

A Caffe2Cachievedaster runtime in comparison to
the existingDpenC\DNNmModule
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Objective

A In order to demonstrate the utilization of théaffe2C
we have implemented &inds of mobile CNidased
Imagerecognitionappson iOS.

nnnnnnnn dle = e ﬁ'
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Contributions

1. We create &affe2Gnvhichconverts the model
definition files and the parameter files Qfaffeinto
a single C code that can run on mobile devices

2. We explain the flow of construction of recognition
app usingCaffe2C

3. We have implemented 4 kinds of mobile Ghaked
Image recognition apps on 10S.
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2. CONSTRUCTION OENN-BASED
MOBILE RECOGNITION SYSTEM
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Caffe2C

A In order to use the learned parameters by Caffe on
mobile devices, it Is necessary to currently tse
OpenC\DNN module» not optimized, relatively slow

A We create &Caffe2Gvhichconverts the CNN model
definition files and theparameter files trained byCaffe
to a single C languagende

I We can use@arameter files trained b{Zaffeon mobiledevices
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Caffe2C

A Caffe2Qchieves faster execution speed in comparisor
to the existingOpenC\DNNmodule

Runtime[msg] Caffe2C vOpenCVDNN(Input size: 227x227)

Caffe2C OpenC\VDNN
AlexNet ;
; ‘ Speedup Rate:
IPhone 7 Plu¢ 106.9 1663.8 * About 1556
IPad Pro 141.5 1900.1
IPhone SE | 141.5 2239.8
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Reasondgor Fast Execution

1. Caffe2Qlirectly converts the Deep Neural Network to
a C source code

Cafte

Network

Mean Caffe2C

Label >—> Single C cod
Model

» Execution
like Compiler

Execution
like Interpreter
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Reasondgor Fast Execution

2. Caffe2(performs the preprocessing of the CNN as
much as possible to reduce the amount of online
computation

I Compute batch normalization in advance for conv weight.

BNetwork
CMean Caffe2C
Caffe<® > 4 files === Single C code
blLabel
BModel

3. Caffe2Cffectively uses NEON/BLAS by mithiteading

2016UEC Tokyo.
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Deployment Procedure

Train Deep CNN model by Caffe
Prepare model files
Generate a C source code Ggffe2Gautomatically
Implement C code on mobile with GUI code

> e

°Train Phase Model

P ti
Caffe Trained Dee reparation

mplement
Convert| ©n Mobile

CNN Modelk Caffemode| C code | {77110
J{k Network : .
D k Mean - '
k Label Caffe2C|| B

Deep CNN
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3. IMAGE RECOGNITIOSYSTEM
FOR EVALUATION
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for evaluation

A In order to demonstrate the utilization of the Caffe2C
we have implemented four kinds of mobile GNN
basedimagerecognition apps omdS

A We explain imageecognition engine used in th®S
application
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CNNArchitecture

A A representativaarchitectures aré\lexNetVGG16 GoogleNe
AIexNet GooglLeNet or NIN

1 3 dense E m m
s . .. | | | 1 ﬂg EE Eﬂﬂiggﬂggﬂii
(((( T | >N M . mm{]ﬁm{]n”ﬂ”ﬂn”ﬂggﬂ“ﬂ“agg LLELL
=\ “ ) H HE i Rl LTS
»:;.“. - pooling 409 4096 ﬂ-ll y
stride \| o6 ¢ B Convolution
Pooling
Other..

oidcn.com
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CNNArchitecture
A The number of weights iAlexNetandVGG16is

too much for mobile. Map,
es
A GooglLeNeis too complicated
for efficient paralleimplemen
-tation. (It has many branches.)
model Alex | VGG-16 | GoogLeNet | NIN
layer 5 13 21 12
COnV welghts 3.80 15M D80 7.6M
Ccomp. 1.18 15.38 1.58 1.15
layer 3 3 1 ()
FC welghts HYM 124M 1M ()
COmp. 59M 1240 1M ()
TOTAL weights
COMP. 1.18 15.58 1.58 1.1B
ImageNet | top-5 err. | 17.0% 7.3% 7.9% 10.9%




