

Caffe2C: A Framework for Easy Implementation of CNN-based Mobile Applications

Ryosuke Tanno and Keiji Yanai

Department of Informatics,

The University of Electro-Communications, Tokyo

The University of Electro-Communications

1. INTRODUCTION

Deep Learning(DNN,DCNN,CNN)

- Deep Learning achieved remarkable progress
 - E.g. Audio Recognition, Natural Language Processing,
- Especially, in Image Recognition, Deep Learning gave the best performance
 - Outperform even humans such as recognition of 1000 object(He+, Delving deep into rectifier, 2015)

Deep Learning Framework

- Many Deep Learning Framework have emerged
 - E.g. Caffe, TensorFlow, Chainer

What is Caffe?

Convolution Architecture For Feature Extraction(CAFFE)

Open Framework, models and examples for Deep Learning

- Focus on Compuer Vision
- Pure C++/CUDA architecture for deep learning
- Command line, Python MATLAB interface
- Fastest processing speed
- Caffe is the most popular framework in the world

H₃C、

© 2016 UEC Tokyo.

Caff

Bring to CNN to Mobile

- There are many attempts to archive CNN on the mobile
 - Require a high computational power and memory

High Computational Power and Memory are Bottleneck!!

How to train a model by caffe?

- **3 files** are required for Training -> Output: **Model**
 - 3 files: Network definition, Mean, Label

Use the 4 Files by Caffe on the Mobile

- We currently need to use OpenCV DNN module
 - not optimized for the mobile devices
 - their execution speed is relatively slow

Objective

 We create a *Caffe2C* which converts the CNN model definition files and the parameter files trained by Caffe to a single C language code that can run on mobile devices

- Caffe2C makes it easy to use deep learning on the C language operating environment
- **Caffe2C** achieves **faster runtime** in comparison to the existing OpenCV DNN module

(C) 2016 UEC Tokyo.

Objective

 In order to demonstrate the utilization of the *Caffe2C*, we have implemented 4 kinds of mobile CNN-based image recognition apps on iOS.

Contributions

- 1. We create a *Caffe2C* which converts the model definition files and the parameter files of Caffe into a single C code that can run on mobile devices
- 2. We explain the flow of construction of recognition app using *Caffe2C*
- 3. We have implemented 4 kinds of mobile CNN-based image recognition apps on iOS.

2. CONSTRUCTION OF CNN-BASED MOBILE RECOGNITION SYSTEM

Caffe2C

- In order to use the learned parameters by Caffe on mobile devices, it is necessary to currently use the OpenCV DNN module not optimized, relatively slow
- We create a *Caffe2C* which converts the CNN model definition files and the parameter files trained by Caffe to a single C language code
 - We can use parameter files trained by Caffe on mobile devices

Caffe2C

• *Caffe2C* achieves faster execution speed in comparison to the existing OpenCV DNN module

Runtime[ms] Caffe2C vs. OpenCV DNN(Input size: 227x227)

	Caffe2C OpenCV DN		
	AlexNet		
iPhone 7 Plus	106.9	1663.8	
iPad Pro	141.5	1900.1	
iPhone SE	141.5	2239.8	

Reasons for Fast Execution

1. Caffe2C directly converts the Deep Neural Network to a C source code

Reasons for Fast Execution

- 2. Caffe2C performs the pre-processing of the CNN as much as possible to reduce the amount of online computation
 - Compute batch normalization in advance for conv weight.

3. Caffe2C effectively uses NEON/BLAS by multi-threading

Deployment Procedure

- 1. Train Deep CNN model by Caffe
- 2. Prepare model files
- 3. Generate a C source code by *Caffe2C* automatically
- 4. Implement C code on mobile with GUI code

3. IMAGE RECOGNITION SYSTEM FOR EVALUATION

UEC The University of Electro-Communications

Image Recognition System for evaluation

- In order to demonstrate the utilization of the Caffe2C, we have implemented four kinds of mobile CNNbased image recognition apps on iOS
- We explain image recognition engine used in the iOS application

CNN Architecture

A representative architectures are AlexNet VGG-16 GoogleNet

VGG-16

Network-In-Network

CNN Architecture

- The number of weights in AlexNet and VGG-16 is too much for mobile.
 GoogLeNet
- GoogLeNet is too complicated for efficient parallel implemen -tation. (It has many branches.)

mo	del	Alex	VGG-16	GoogLeNet	NIN
	layer	5	13	21	12
conv	weights	3.8M	15M	5.8M	7.6M
	comp.	1.1B	15.3B	1.5B	1.1B
	layer	3	3	1	0
\mathbf{FC}	weights	59M	124M	1M	0
	comp.	59M	124M	1M	0
TOTAL	weights	62M	138M	6.8M	7.6M
	comp.	1.1B	15.5B	1.5B	1.1B
ImageNet	top-5 err.	17.0%	7.3%	7.9%	10.9%

CNN Architecture

- We adopt Network-in-Network (NIN).
 - No fully-connected layers (which bring less parameters)
 - Straight flow and consisting of many conv layers
 - relatively smaller than the other architectures

⇒ It's easy for parallel implementation.
Efficient computation for conv layers is needed !
Network-In-Network(NIN)

Fast computation of conv layers

- efficient GEMM with 4 cores and BLAS/NEON -

• Conv = im2col + GEMM (Generic Matrix Multiplication)

Fast Implementation on Mobile

- Speeding up Conv layers → Speeding up GEMM
 - computation of conv layer is decomposed into "im2col" operation and generic matric multiplications(GEMM)
 - Multi-threading: Use 2cores in iOS , 4 cores in Android in parallel
 - SIMD instruction(NEON in ARM-based processor)
 - Total: iOS: 2Core*4 = 8calculation, Android: 4Core*4 = 16 calculation
 - BLAS library(highly optimized for iOS ⇔ not optimized for Android)
 - BLAS(iOS: BLAS in iOS Accelerate Framework, Android: OpenBLAS)

UFC The University of Electro-Communications

Evaluation: Processing time

- iOS: BLAS >> NEON, Android: BLAS << NEON
 - For iOS, using BLAS in the iOS Accelerate Framework is the best choice.
 - For Android, using NEON (SIMD instruction) is better than OpenBLAS.

Recognition Time[ms] BLAS vs. NEON

	NEON	BLAS	Devices	BLAS	Highly
iOS	181.0	55.7	iPhone 7 Plus	Accelerate	optimized
iOS	222.4	66.0	iPad Pro	Accelerate	
iOS	251.8	79.9	iPhone SE	Accelerate	
Android	251.0	1652.0	GALAXY Note 3	OpenBLAS	

Comparison to FV-based Previous Method Deep Learning with UEC-FOOD100 dataset

• Much improved (65.3% ⇒ 81.5% (top-1))

4. MOBILE APPLICATIONS

4 iOS Applications

- We have implemented 4 kinds of mobile CNN-based image recognition apps on iOS
 - Food recognition app: "DeepFoodCam"
 - Bird recognition app: "DeepBirdCam"
 - Dog recognition app: "DeepDogCam"
 - Flower recognition app: "DeepFlowerCam"

DeepFoodCam

 Recognize 101 classes including 100 food classes and one nonfood class

Training Phase

- fine-tuned the CNN with 101 class images
 - totally 20,000 images
 - UECFOOD-100 and non-food collected from Twitter

Accuracy

Target	Top-1	Top-5	
Food 101 class	74.5%	93.5%	

DeepBirdCam

• Recognize 200 bird class

Training Phase

 fine-tuning CNN with 6033 images of Caltech-UCSD Birds 200 Dataset

UFC The University of Electro-Communications

DeepDogCam

• Recognize 100 dog class

Training Phase

 fine-tuning CNN with 150 and over images per class of Stanford Dogs Dataset Dataset

Accuracy

Target	Top-1	Top-5
Dog 100 class	69.0%	91.6%

UFC: The University of Electro-Communications

DeepFlowerCam

• Recognize 102 flower class

Training Phase

 fine-tuning CNN with 80 and over images per class of 102 Category Flower Dataset

Accuracy				
Target	Top-1	Top-5		
Flower 102 class	64.1%	85.8%		

4 iOS Applications

- We have implemented 4 kinds of mobile CNN-based image recognition apps on iOS
 - Food recognition app: "DeepFoodCam"
 - Bird recognition app: "DeepBirdCam"
 - Dog recognition app: "DeepDogCam"
 - Flower recognition app: "DeepFlowerCam"

If you prepare training data, you can create Tmobile recognition apps in a day !!

Conclusions

- 1. We create a *Caffe2C* which converts the model definition files and the parameter files of Caffe into a single C code that can run on mobile devices
- 2. We explain the flow of construction of recognition app using *Caffe2C*
- 3. We have implemented 4 kinds of mobile CNN-based image recognition apps on iOS.

Additional work

- We implemented apply our mobile framework into real-time CNN-based mobile image processing
 - such as Neural Style Transfer

Thank you for listening

Neural Style Transfer

ΓΟΚΥΟ

iOS App is Available ! "RealTimeMultiStyleTransfer"

016 UEC Tokyo

Extension of NIN The University of Electro-Communications

adding BN, 5layers, multiple image size

- Modified models (BN, 5layer, multi-scale)
 - adding BN layers just after all the conv/cccp layers
 - replaced 5x5 conv with two 3x3 conv layers
 - reduced the number of kernels in conv 4 from 1024 to 768
 - replaced fixed average pooling with Global Average Pooling

