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Abstract—In general, CNN based semantic segmentation meth-
ods assume pixel-wise annotation is available, which is costly to
obtain in general. On the other hand, image-level annotations
is much easier to obtain than pixel-level annotation. Then, in
this work, we focus on weakly-supervised semantic segmentation
which is known as task of using training data with only image-
level annotations.

In this paper, we propose a new CNN-based semantic seg-
mentation method which uses both activation features calculated
by feed-forwarding and object saliency maps obtained by back-
propagation. As a CNN, we use the VGG-16 pre-trained with
1000-class ILSVRC datasets and fine-tuned it with multi-label
training using only image-level labeled dataset. By the experi-
ments, we show that the proposed method achieved state-of-the-
art results with the PASCAL VOC 2012 dataset.

I. INTRODUCTION

Semantic image segmentation is a task to label object class
labels to each of all the pixels in a given image, which is
more challenging task than object classification and object
detection. Semantic segmentation is expected to contribute
detailed analysis of images in various practical tasks. Due
to the recent advent of deep learning methods, convolutional
neural network (CNN) based methods have outperformed most
of the state-of-the-art in various kinds of image recognition
tasks including semantic segmentation.

However, most of the CNN based semantic segmentation
assume pixel-wise annotation is available, which is costly
to obtain in general. On the other hand, collecting images
with image-level annotation is relatively easier than pixel-
level annotation, since there are many images attached with
tags on the Web. Then, in this work, we focus on weakly-
supervised semantic segmentation which requires not pixel-
wise annotation as well as bounding box annotation but only
image-level annotation.

In this work, we propose a new CNN-based semantic seg-
mentation method which uses both feed-forwarding activations
and object saliency maps obtained by back-propagation (BP).
We integrate activation feature maps of convolutional layers of
a CNN and BP-based object saliency maps [1] and use them
to detect object regions.

Especially, we exploit and compare two kinds of feature
maps based on the “Zoom-Out Features (ZOF)“[2] and “Fully
Convolutional Network (FCN)“[3] for weakly supervised seg-
mentation. Furthermore, we improve the method to estimate
BP-based object saliency maps [1] for denser and clearer
saliency maps by up-sampling saliency maps of the interme-
diate layers and aggregating them.

As a CNN, we use the VGG-16 model [4] pre-trained
with 1000-class ILSVRC datasets and fine-tuned with multi-
labeled training images in the PASCAL VOC dataset using
only image-level labels.

To summarize our contributions in this paper, they are as
follows:

e We propose a new method which uses both feed-
forwarding feature maps and back-propagation based
object saliency maps for weakly-supervised semantic
segmentation.

o We show the effectiveness of the proposed method by the
experiments with the Pascal VOC dataset, and achieved
the state-of-the-art on the test dataset.

II. RELATED WORK

Recently, CNN-based semantic segmentation are being ex-
plored very actively, and the accuracy was much improved
compared to the non-CNN-based conventional methods. In this
section, first we describe full-supervised semantic segmenta-
tion, and next we explain weakly-supervised segmentation the
objective of which is the same as our work.

A. CNN-based fully-supervised semantic segmentation

Girshick et al. [5] and Hariharan et al. [6] proposed an
object segmentation method using region proposal and CNN-
based image classification. Firstly, they generated 2000 region
proposals at most by Selective Search [7], and secondly
applied the trained CNN to each of the proposals. Finally they
integrated all the CNN outputs and generated the final object
regions. Although these methods outperformed the conven-
tional methods greatly, they had a drawback that they required
long processing time for CNN-based image classification of
many region proposals. While Girshick et al. [5] and Hariharan
et al. [6] took advantage of excellent ability of CNN on
image classification task for semantic image segmentation in
a relatively straightforward way, Long et al. [3] and Mostajabi
et al. [2] proposed CNN-based semantic segmentation in a
hierarchical way which achieved more robust and accurate
segmentation.

Mostajabi et al. [2] proposed a method which associated
up-sampled activation features of several intermediate layers
with super-pixels, and treated them as local features, which
are called “Zoom-Out Features (ZOF)”. They achieved 69.6%
accuracy on the Pascal VOC 2012 data set.



On the other hand, Long et al. [3] proposed a CNN-based
segmentation method which integrated “deconvolution” and
object heatmaps obtained by replacing all the full connection
layers with 1 x 1 convolutional layers and providing a larger-
size image than a usual 256 x 256 image. This modification
replaced class score vectors with class score maps as outputs
of the CNN, which expressed rough location of objects [8].
This idea was originally proposed by Sermanet et al. [9] and
called as “Fully Convolutional Network (FCN)” or “sliding
CNN”, which played important roles to raise performance on
CNN-based segmentation. By using larger-size images as input
images, more detailed location information can be obtained in
the intermediate layers as well as in the class score maps from
the last layer. This can be used as unary priors of CRF [10],
[11], [12].

In our work, we apply zoom-out features (ZOF) and fully
convolutional network (FCN) both of which showed high
performance on fully supervised segmentation task for weakly-
supervised segmentation tasks. We use them to detect rough
object location in the weakly-supervised setting.

B. CNN-based weakly-supervised segmentation

Simonyan et al. [1] showed that object segmentation with-
out pixel-wise training data can be done by using back-
propagation processing which is a method to train a CNN. To
train a CNN, we optimize CNN parameters so as to minimize
the loss between groundtruth values and output values. In the
back-propagation process, derivatives of loss are propagated
from the top layers to the lower layers. Springenberg et
al. [13] also proposed a method for object localization by back-
propagating the derivatives of a maximum loss value of the
object detected. They achieved more accurate localization by
limiting back-propagating values to positive values. However,
in [1], [13], there are little difference in derivatives obtained
from signals of each class. Therefore, we used derivatives
for estimating background region and combining feed-forward
activations.

Pedro et al. [14] achieved weakly-supervised segmentation
by using multi-scale CNN proposed in [9]. They integrated
the outputs which contained location information with log
sum exponential, and limited object regions to the regions
overlapped with object proposals.

Pathak et al. [15], [16] and Papandreou et al. [17]
achieved weakly-supervised semantic segmentation by adapt-
ing CNN models from fully-supervised segmentation to
weakly-supervised segmentation. In [15] they combined the
output of the model proposed in [3] with global-max-pooling,
and they enabled weakly-supervised training. In [16], they
improved their method by adding some constraints. Papan-
dreou et al. [17] trained the model proposed in [10] with EM
algorithm.

As described above, recently in some works [15], [16],
[17] the models for fully-supervised segmentation based on
FCN [3] were adapted for weakly-supervised segmentation.
However, “zoom-out features” proposed in [2] is not applied
to weakly-supervised segmentation. Then, in this paper, we
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Fig. 1. The processing flow of the ZOF-base method.
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Fig. 2. The processing flow of the FCN-based method.

exploit zoom-out features for weakly-supervised semantic seg-
mentation and compared a method based on FCN with it.

In addition, we use object saliency maps obtained by back-
propagation [1] and aggregated intermediate derivatives by up-
sampling to generate dense maps. We show saliency maps
can improve inference based on feed-forward activations by
treating as region likelihood of background class which is
similar to smoothing priors on [17].

III. METHOD

In the proposed method, for weakly-supervised object re-
gion estimation, we use feed-forward feature maps of a CNN
as well as back-propagation-based object saliency maps [1].
As the ways to use feature maps for region estimation,
we exploit and compare two methods, “zoom-out features
(ZOF)” [2] and “fully convolutional network (FCN)*“ [3],
both of which achieved state-of-the-arts as fully-supervised
segmentation methods. Figure 1 and 2 show the processing
flow of two methods, ZOF-based method and FCN-based
method, respectively.

A. CNN model

In this work, we use VGG-16 [4] as a basic CNN archi-
tecture. In our framework, we fine-tune a CNN with training
images having no pixel-wise and bounding box information
but image-level multi-label annotation. To carry out multi-label
training of the CNN, we use Sigmoid cross entropy loss which
is a standard loss function for multi-label annotation instead
of soft-max loss. The Sigmoid cross entropy loss function is
represented in the following equation:

loss = Z[pnlog P — (1 — pp)log(l — py)] (1
k=1



where K is the number of classes, p, = {0,1} which
represents the existence of the corresponding class label, and
P, means the output of Sigmoid function of the class score
fx(x) represented in the following equation:
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B. Zoom-out features

Zoom-out features which has been proposed by Mostajabi
et al [2] is a method which achieved the state-of-the-art for
fully supervised semantic segmentation. In [2], they associated
activation signals in feature maps with super-pixels of a
given image, and obtained visual features of super-pixels by
averaging signals over each of super-pixels. They also up-
sampled all the feature maps so that their size became the same
as a given image, and integrated up-sampled feature maps to
estimate object locations more accurately.

In this paper, we apply “Zoom-Out Feature (ZOF)” [2]
to weakly-supervised segmentation. Note that we use super-
pixels as region representation in the same way as [2] for
this ZOF-based method. In case of fully-supervised training,
only ZOF inside the labeled object regions can be extracted
as feature vectors for training, since pixel-wise annotation is
available. However, in case of the weakly-supervised setting,
correspondences between groundtruth labels and object re-
gions are unknown. Then, we estimate correspondences using
multiple instance learning (MIL) which is one of common
methods to estimate regions corresponding to given labels, and
adopt mi-SVM [18] as a method of multiple instance learning
which uses SVM iteratively. Given a certain class, we regard
images having the label of the target class as positive bags,
and image having no label of the target class as negative bags.
Positive bags contain more positive regions, while negative
bags contain no positive regions. Because MIL can estimate
positive regions, we can estimate positive super-pixels by using
MIL.

In the proposed ZOF-based method, we integrate object
super-pixels estimated by ZOF and MIL with BP-based object
saliency maps using CRF. The detail is explained in Section
III-E.

C. Fully convolutional network

“Fully convolutional network (FCN)” originally proposed
by Sermanet et al. [9] plays important role in the recent
semantic segmentation methods [3], [10]. Fully convolutional
network allows an arbitrary-size image by replacing all the
full connection layers with 1 x 1 convolutional layers. In
general, the FCN is used with a larger-size image than a usual
256 x 256 image to obtain a coarse object heatmap as an
output. Therefore, with FCN, we can estimate object location
directly without a second training step including location
estimation such like mi-SVM in Section III-B for weakly-
supervised segmentation.

Some works which adopted FCN to weakly-supervised
segmentation [15], [17] have been proposed so far. They
trained FCN's using neither pixel-wise annotation nor bounding

box annotation but image-level annotation with global-max-
pooling.

In the proposed FCN-based method, we integrate coarse
object heatmaps obtained by FCN and saliency maps the detail
of which is explained in Section III-D.

D. BP-based object saliency maps

In [1], they regarded the derivatives of the class scores with
respect to an input image as class saliency maps. However,
the position of an input image is the furthermost from the
class score output on the deep CNN, which sometime causes
weakening or vanishing of gradients. Instead of the derivatives
of the input image, we use the derivatives of relatively upper
intermediate layers which are expected to retain more high-
level semantic information. We select the maximum absolute
values of the derivatives with respect to the feature maps
at each location of feature maps across all the kernels, and
up-sample them with bilinear interpolation so that their size
becomes the same as an input image. Finally we average
them to obtain one saliency map. The idea on aggregating
of information extracted from multiple feature layers was
inspired by the work of [3], although they extracted not CNN
derivatives but feature maps calculated by feed-forwarding.

The class score derivative v; of the i-th layer is the derivative
of class score Sc with respect to the layer L; at the point
(activation signal) L;:
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v; can be computed by back-propagation. After obtained v;,
we up-sample it to w; with bilinear interpolation so that the
size of an 2-D map of v; becomes the same as an input image.
Next, the saliency map m; ;. is computed as

M2y = MAX W, (2.1) | (4)

where h;(x,y, k) is the index of the element of w;, and k
represents kernel. Then, we aggregate m; ., for each target
layer and obtain a dense saliency maps g, , are represented
as:

1
Jow =T Ztanh(a M zy) (5)

where L is the number of layer to aggregate, and « is a scalar
constant.

To estimate object saliency maps, we use guided back prop-
agation (GBP) proposed by Springerberg et al. [13] instead of
the normal back propagation (BP) used in the work on class
saliency map estimation by Simonyan et al. [1]. Only the ways
to back propagation through ReL.Us (rectified linear units) are
different. In the GBP, only positive loss values are propagated
back to the previous layers through ReLUs as follows:
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Fig. 3. First row: feature maps (activations) (the given image itself at image-
level), Second row: saliency maps by back-propagation (BP), Third row:
saliency maps by guided back-propagation (GPB), Columns: image-level,
conv2_1, conv3_2, conv4_2, and conv5_2, combined object saliency maps

GBP can emphasize edges of objects, which is a desirable
property for estimating object saliency maps. Figure 3 shows
up-sampled saliency maps of “bicycle” in the image-level
and four intermediate layers of VGG16 [4], w;, w§omv2-1,
wgonvs-L qpgonvd-l fqconvs 1 ghtained by both BP and guided
BP as well as feature maps in case of back-propagating the
“bicycle” signal to the network.

By aggregating saliency maps in the intermediate layers,
we can obtain more clear object saliency maps. In this paper,
we use this object saliency map as generic foreground region
prior.

E. Integration of feature maps and saliency maps

In this section, we describe how to integrate feature maps
with saliency maps regarding two kinds of the proposed
methods, the ZOF-based method and the FCN-based method.

We adopted different integration methods for the two meth-
ods. In the ZOF based method, we employed CRF using super-
pixels. On the other hand, in the FCN based method, we
treated saliency maps as foreground priors which is similar
to smoothing priors in [14].

1) CRF with super-pixel for ZOF: Since each zoom-out
feature corresponds to each super-pixel, we regard super-pixels
as nodes in the CRF graph. We assume that y,, is a label of
super-pixel p in Image I, and y is a aggregated vector of all
the y,,. The energy function of CRF is defined as follows:

EGD =Y "UllD)+ > V(g yqll) )

pEP p,qEN

where U(-) is a unary term, and V() is a pairwise term.
We use as unary potential U(y,|I) = —logPr(y,|I), where
Pr(y,|I) is the label assignment probability at each super
pixel y, on image I. We obtained the label assignment
probability of each object class in foreground by adapting
linear SVM which is trained using mi-SVM [18] to zoom-out
features. We use saliency maps obtained by back-propagation
for estimating background class probability.

We define a pairwise term as follows referring to [19], [20],
[21]:

L(p,q)
L+ p—dl

where ||p — ¢|| is a distance between super-pixel p and ¢
regarding LUV color vectors, and L(p, ¢) is the length of the
boundaries shared by super-pixel p and q.

2) Saliency maps as smoothing prior for FCN: We enhance
coarse object heatmaps which are obtained as the final layer
output of FCN by multiplying saliency maps. We up-sample
coarse object heatmaps and saliency maps to unify their size
in advance. Where f, , represents coarse object heatmaps and
9=,y Tepresents saliency maps at pixel (z,y), the segmentation
result h , is obtained as follows:

V (Y, yqlI) = ( > [Yp 7 Yql )

k, ifarg max fg g., >¢
hm,y = ceC b
kyg otherwise

(10)

C is a set of the target object classes, and ¢ is a pre-defined
threshold.

IV. EXPERIMENTS
A. Dataset

In the experiments, we use the PASCAL VOC 2012 seg-
mentation data [22] to evaluate the proposed methods. The
PASCAL VOC dataset consists of 1464 training images, 1449
validation images, and 1456 test images including 20 class
pixel-labels. In addition, we used additional PASCAL 20 class
data including 10582 train_aug images provided by Hariharan
et al. [23].

B. Experimental setup

1) Training of CNN: We used 16-layered CNN, VGG-
16 [4] pre-trained with ImageNet 1000 categories as a basic
CNN architecture. We fine-tuned VGG-16 using PASCAL
VOC training dataset and train_aug by Hariharan et al [23]
with Sigmoid entropy loss for multi-label training as described
in section III-A with batch size 16 and learning rate le-5,
momentum 0.9 and weight decay 0.0005. For the first 30000
iterations, we fine-tuned only the upper layers of the modified
VGG-16 than Pool_5, and for the next 20000 iterations, we
fine-tuned all the layers.

2) Zoom-out features: In the ZOF-based method, we ex-
tracted about 500 super-pixels by the SLIC super-pixels [24]
from all the training images, and calculated Zoom-out features
(ZOF) [2]. While in [2] they extracted ZOF from all the layers
of VGG-16, 13 convolutional layers and 3 fully connected
layers, we extracted ZOF from 13 convolutional layers, pool5
and fc7. When applying mi-SVM [18] for each class, we used
500 images of the target class as positive samples and 1000
images of the other classes than the target class. We used the
classification result of the CNN to limit the possible object
classes for CRE.



3) Fully convolutional networks: In the FCN based method,
we used image-level recognition results as image-level prior
(ILP) for post processing which is noted by [14] to consider
global context. Specifically, we applied global-max-pooling to
the obtain heatmaps to obtain ILP in the same way as the
training phase, and multiplied each class pooled score and
each class heatmap value.

Our approach differs from [14] on the method of enhancing
coarse heatmaps. Pedro et al. [14] used Multi-scale Combina-
torial Grouping (MCG) [25] which was known as a region
proposal method for correcting heatmaps which is called
as “smoothing priors (SP)*“ and made foreground mask by
aggregating objectness scores of about 2000 region candidates.
On the other hand, we used saliency maps obtained by back-
propagation and corrected coarse heatmaps in similar way to
MCG smoothing priors. Then, we compared our method with
MCG smoothing priors in the experiments.

4) Saliency maps: Back-propagation needs higher compu-
tational cost than feed-forward computation. Thus, we com-
puted backward once for a given image even if there are
several class objects. We predicted presence/absence of objects
in the image by feed-forwarding, and made a back-propagating
signal which is the same dimension to the output vector of the
CNN. Simply, we set the signal on values is 1 for presence
classes and is O for absence classes. We propagated the
signal by back-propagation from the top convolutional layer,
extracted gradients from the layer conv3_2 and conv4_2 and
conv5_2, and aggregated them following the method explained
in Section III-D.

C. Experimental Results

Table I and II shows the results on the proposed methods
and some other state-of-the-art methods for PASCAL VOC
2011 validation data and PASCAL VOC 2012 test data. Note
that although [14] showed the high performance, they used
700,000 additional training images selected from ImageNet
which about 70 times as large as the common additional
training data [23]. We report three results by our proposed
methods, and compare them with other state-of-the-art weakly
supervised segmentation methods. “ZOF with GBP” and “FCN
with GBP” means the proposed methods which integrate
feature maps and saliency maps obtained by guided back-
propagation (GBP). We also report the “FCN with MCG” re-
sult to compare effect of saliency maps with smoothing priors
of “MIL-seg” [14] which is generated by MCG. Therefore,
we examine the effectiveness of GBP-based object saliency
maps as foreground priors against the smoothing priors [14]
by comparing “FCN with GBP” and “FCN with MCG”.

“ZOF with GBP” achieved the better or near to result of
state-of-the-art methods. “FCN with GBP” outperformed MIL-
FCN [15], EM-Adapt [17], CCNN [16] using only train_aug
samples which were provided by Hariharan et al. [23] on
validation set and test set. “FCN with GBP” also outperformed
MIL-ILP-seg [14] which used additional images on test set.
We shows some example results in Figure 4.

Fig. 4. For each row, we show the input image, result of ZOF with GBP, and
FCN with MCG, and FCN with GBP, and ground truth label.

We also compared “FCN with GBP” with “FCN with MCG”
to verify the effect of saliency map based and MCG-based
smoothing priors. As a result, “FCN with GBP” outperformed
“FCN with MCG” clearly, i.e.,33.8% vs. 41.4% (val. set),
33.1% vs. 40.7% (test set). Therefore, combining saliency
maps obtained by guided back-propagation and feature maps
of CNN is the most effective for the weakly supervised seg-
mentation task. Figure 5 shows comparison between saliency
maps and MCG priors, which exhibits that saliency maps
reacted to only target object regions more correctly.

V. CONCLUSIONS

In this paper, we proposed a novel weakly-supervised
segmentation method which were based on feature maps
and back-propagation-based object saliency maps [1]. In the
proposed method, we showed that denser and clearer saliency
map can be obtained by up-sampling saliency maps of the
intermediate layers and aggregating them. We achieved the
state-of-the-arts in the weakly supervised segmentation task,
and confirmed the effectiveness of back-propagation-based
object saliency maps as smoothing priors.
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