

Comparison of Two Approaches for Direct Food Calorie Estimation

Takumi Ege and Keiji Yanai The University of Electro-Communications, Tokyo

Direct food calorie estimation

CaloNavi

Fully-automatic food calorie estimation from a food photo has still remained as an unsolved problem.

Previous work: Regression-based

- Regression-based direct calorie estimation.
 - Multi-task CNN of food categories and calories.
 - Create a new calorie-annotated food photo dataset.

Ege and Yanai. Simultaneous estimation of food categories and calories with multi-task cnn. In Proc. of IAPR International Conference on Machine Vision Applications(MVA), 2017.

Previous work: Search-based

- Search-based food calorie estimation.
 - Similar image search based on hand-crafted features such as
 SURF-based BoF and color histograms.
 - Create a new calorie-annotated food photo dataset.

Miyazaki et al. Image - based Calorie Content Estimation for Dietary Assessment, Workshop on Multimedia for Cooking and Eating Activities, 2011.

Estimated value

Comparison of two methods

Regression-based

- Regression-based direct calorie estimation.
 - Multi-task learning of food categories and calories.
 - Create a new calorie-annotated food photo dataset.

Search-based

- Search-based food calorie estimation.
 - Similar image search based on hand-crafted features such as SURF-based <u>BoF</u> and color histograms.
 - Create a new calorie-annotated food photo dataset.

Regression-based

- Multi-task learning of food categories and calories.
- The architecture is based on VGG16.

Ege and Yanai. Simultaneous estimation of food categories and calories with multi-task cnn. In Proc. of IAPR International Conference on Machine Vision Applications(MVA), 2017.

Regression-based

- Loss function is a linear combination of food calorie estimation loss L_{cal} and classification loss L_{cat} .
 - Food calorie estimation loss L_{cal} is a linear combination of a relative error L_{re} and an absolute error L_{ab} .

$$L_{ab} = |y_i - g_i| \qquad L_{re} = \frac{|y_i - g_i|}{g_i}$$

Let y_i as the estimated value of an image x_i and g_i as the ground-truth.

- Classification loss L_{cat} is softmax cross entropy.

Search-based

- Search similar images from the database and use the food calorie of the images.
- For searching similar images, we use fc6 activation of VGG16 trained with triplet loss L_T and classification loss L_{C_+} , L_C and L_{C_-} .

Search-based

- Loss function is a linear combination of L_T , L_{C_+} , L_C and L_{C_-} .
 - Triplet loss L_T $L_T = max(0, g + ||f_+ - f||_2 - ||f_- - f||_2)$ $||f_+ - f||_2$: Euclidean distance between fc6 activations of the **same category** images. $||f_- - f||_2$: Euclidean distance between fc6 activations of the **different category** images.
 - Classification loss L_{C_+} , L_C and L_{C_-} are softmax cross entropy.

Calorie-annotated food image dataset

We use calorie-annotated 15 food category dataset. [Ege and Yanai, 2017]

Calorie-annotated food image dataset

[1] Matsuda et al. Recognition of multiple-food images by detecting candidate regions In Proc. of IEEE International Conference on Multimedia and Expo, 2012.

Experiment : Regression-based

- We train CNN with relative error and absolute error on calorie-annotated food image dataset.
 - Training: 70%, Testing: 30%

Experiment : Search-based

- We train VGG16 with triplet loss and classification loss on UECFOOD100.
- We use an activation signals of fully connected layers of the trained network as CNN features.
- We create CNN feature database on calorieannotated food image dataset.
 - Database : 70%, Testing : 30%

Result : Comparison of two methods

- Baseline (Classification)
 - Use of fixed calorie value of each category.

	model	Rel. err. (kcal)	Abs. err. (%)	Corre lation	< 20 % rel. err. (%)
	Baseline	32.4	93.6	0.784	50.0
Reg.	VGG16 single-task	29.2	100.4	0.783	46.0
	VGG16 multi-task	28.0	96.5	0.805	47.2
Sea.	VGG16(uecfood100) fc6	38.0	101.0	0.764	47.2
	VGG16(uecfood100) fc6 triplet	38.4	101.5	0.754	45.9
	VGG16(uecfood100) fc6 triplet + cls	36.7	98.6	0.777	48.1

Result : Comparison of two methods

Correlation between estimated value and ground-truth

Conclusion

• We compared two methods for direct food calorie estimation.

• Regression-based method is better than others, however it is not reliable results.

• It is necessary to consider food ingredients as well as food categories.

Future work

- We use food ingredients information on recipe data.
- In order to realize highly accurate food calorie estimation, we create new datasets.

