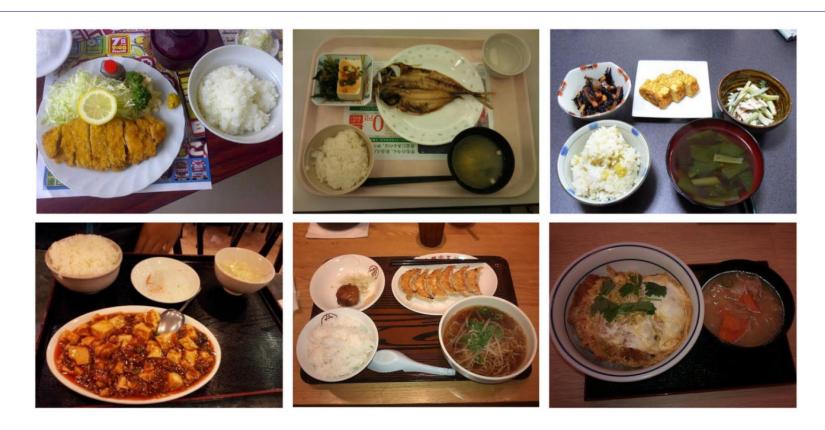


CNNによる複数料理写真からの 同時カロリー量推定

會下拓実 柳井啓司

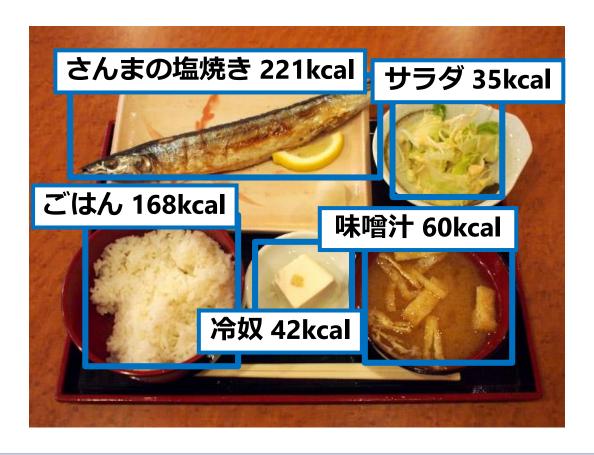
電気通信大学大学院 情報理工学研究科 情報学専攻

背景:食事画像カロリー量推定



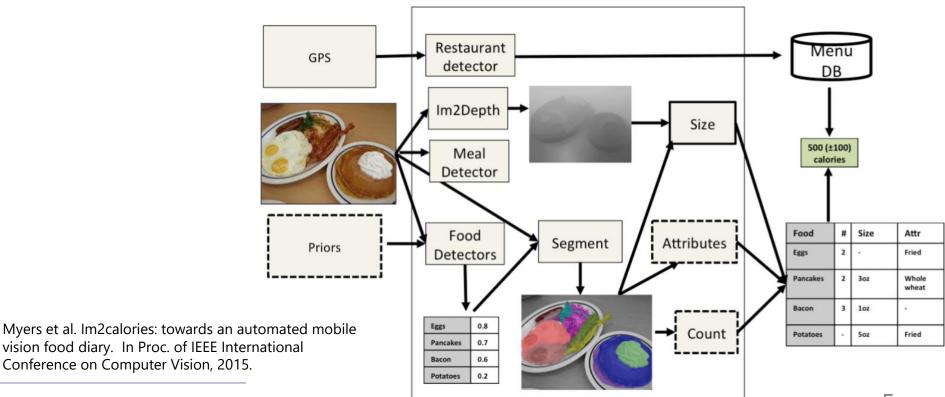
食事画像からのカロリー量推定は未解決の問題

背景:複数品目に対する食事画像認識

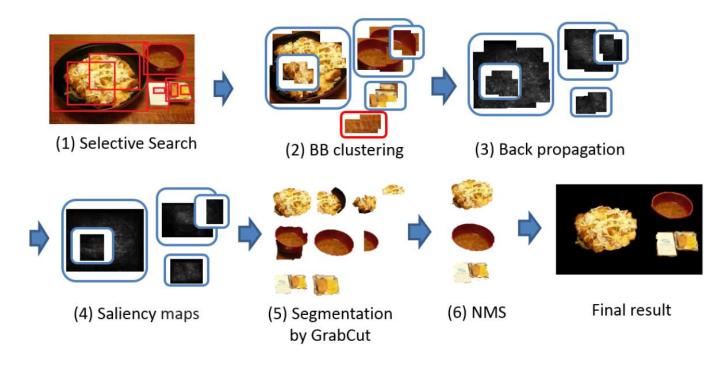


複数品目を認識することで 少ない手間で記録することが可能

研究目的

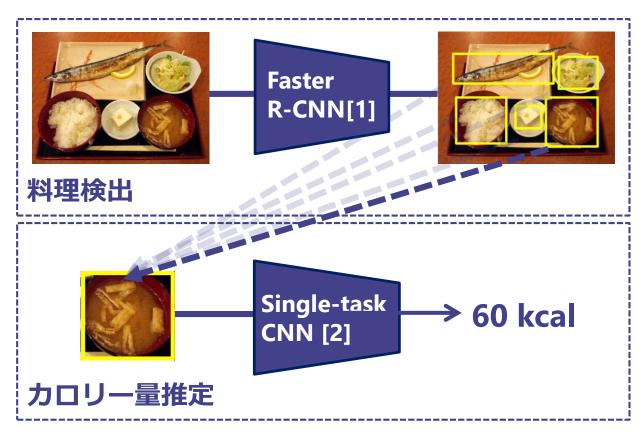

複数料理写真からの同時カロリー量推定

関連研究:カロリー量推定


- Im2Calories [Myersら 2015]
 - CNNによるクラス分類, セグメンテーション, 深度推定
 - 食材情報とボリュームからカロリー量を推定

関連研究:料理検出

- CNN-based Food Image Segmentation [下田ら 2015]
 - 各候補領域のサリエンシーマップを生成
 - 領域情報からバウンディングボックスを推定



W. Shimoda and K. Yanai. CNN-based food image segmentation without pixel-wise annotation. In *Proc. of IAPR International Conference on Image Analysis and Processing*, 2015.

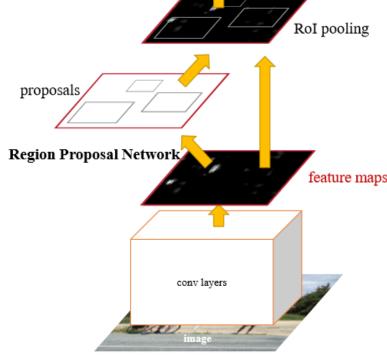
提案手法: 概要

複数料理写真からの同時カロリー量推定

- [1] S. Ren et al. Faster R-CNN: Towards realtime object detection with region proposal networks. NIPS 2015.
- [2] T. Ege and K. Yanai. Simultaneous estimation of food categories and calories with multi-task cnn. MVA 2017.

classifier

手法:料理検出

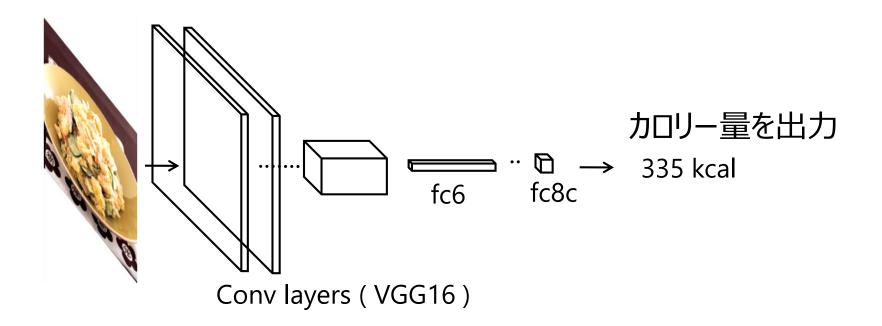

Faster R-CNNの導入

• システム全体のend-to-endな学習が可能

• 2つのモジュールで構成される

Fast R-CNN detector 画像全体を一度だけCNNに投入 クラス分類と矩形回帰の同時学習

Region Proposal Network (RPN) CNNベースの候補領域検出の手法 Fast R-CNN detectorと計算を共通化


S. Ren et al. Faster R-CNN: Towards realtime object detection with region proposal networks. NIPS 2015.

手法:カロリー量推定

CNNを用いた回帰による手法

• 単品料理画像からカロリー量を直接出力

Ege and Yanai. Simultaneous estimation of food categories and calories with multi-task cnn. MVA 2017.

手法:カロリー量推定

CNNを用いた回帰による手法

- 損失関数 L_{cal}
 - 相対誤差 L_{re} と絶対誤差 L_{ab} の線形和

$$L_{ab} = |y_i - g_i| \qquad L_{re} = \frac{|y_i - g_i|}{g_i}$$

 y_i :画像 x_i から推定されたカロリー量

 g_i :正解カロリー量

実験

- Faster R-CNNによる料理検出
 - UEC Food-100[1]
 - 学校給食画像

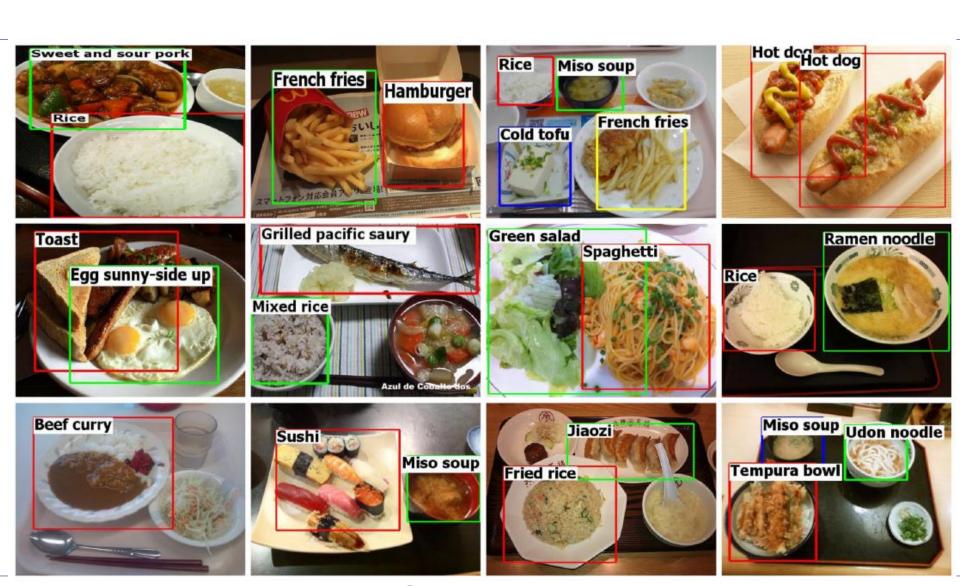
- 複数料理写真からのカロリー量推定
 - 合計カロリー量付き学校給食画像

[1] Y. Matsuda, H. Hajime, and K. Yanai. Recognition of multiple-food images by detecting candidate regions. In Proc. of IEEE International Conference on Multimedia and Expo, 2012.

実験: UEC Food-100の料理検出

- UEC Food-100
 - 料理100カテゴリ, 各カテゴリ100枚以上
 - 学習に単品画像11,566枚,テストに複数料理画像1,174枚を使用

実験: UEC Food-100の料理検出


- ・ 比較のために下田ら[1]の評価方法に従う
 - 評価指標としてPASCAL VOC detection taskの mean Average Precision(mAP) を使用.

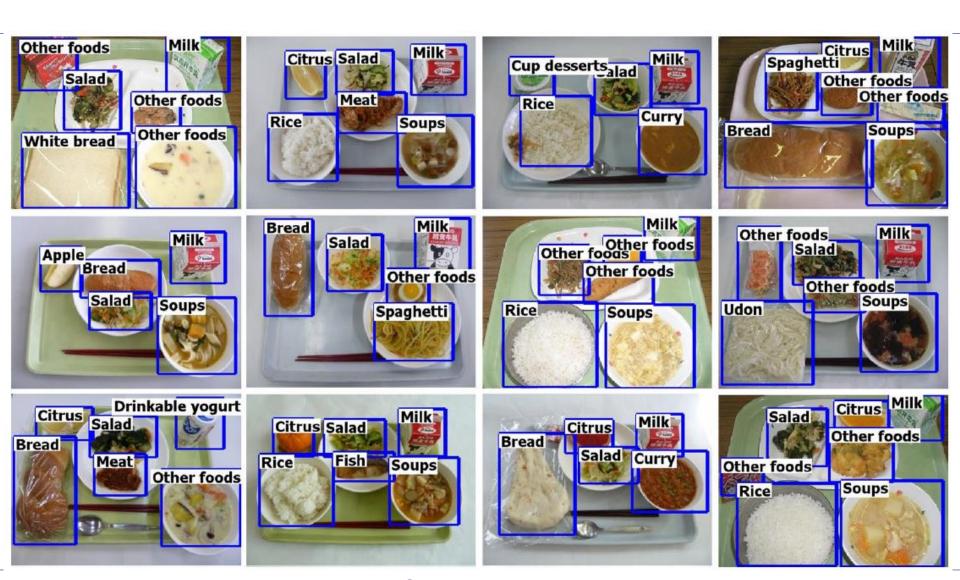
	100カテゴリ	テスト画像枚 数≧10の 53カテゴリ	テスト画像枚 数≧50の 11カテゴリ
R-CNN	26.0	21.8	25.7
下田らの手法 (BP)[1]	49.9	55.3	55.4
Faster R-CNN	42.0	46.3	57.9

[1] W. Shimoda and K. Yanai. CNN-based food image segmentation without pixel-wise annotation. In *Proc. of IAPR International Conference on Image Analysis and Processing*, 2015.

実験: UEC Food-100の料理検出

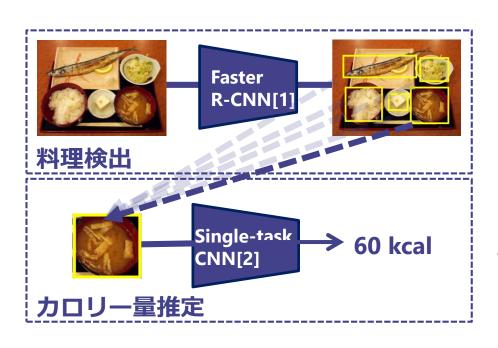
実験: 学校給食画像の料理検出

- 学校給食画像データセット
 - 料理20カテゴリ, 合計3941枚
 - 学習に80%, テストに20%を使用



実験: 学校給食画像の料理検出

	クラス	AP (%)		クラス	AP (%)
1	牛乳	99.6	12	汁物	92.2
2	飲むヨーグルト	90.6	13 カレー		95.1
3	ごはん	99.7	14	麻婆豆腐	99.8
4	混ぜごはん	82.7	15	ビビンバ	72.9
5	パン	95.5	16	焼きそば	79.9
6	食パン	83.7	17	パスタ	90.7
7	うどん	98.0	18 柑橘類		99.6
8	魚料理	78.3	19 りんご		98.5
9	肉料理	70.8	20	カップデザート	93.1
10	サラダ	94.0	21	その他	90.4
11	ミニトムト	100.0	mAP		90.7



実験: 学校給食画像の料理検出

実験: 複数料理写真からのカロリー量推定

合計カロリー量付き給食画像データセット - 合計690枚, すべてテストに使用

Faster R-CNNの学習には BB付き学校給食画像を使用

学習にカロリー量付き食事画像 データセット[2]を使用

実験: 複数料理写真からのカロリー量推定

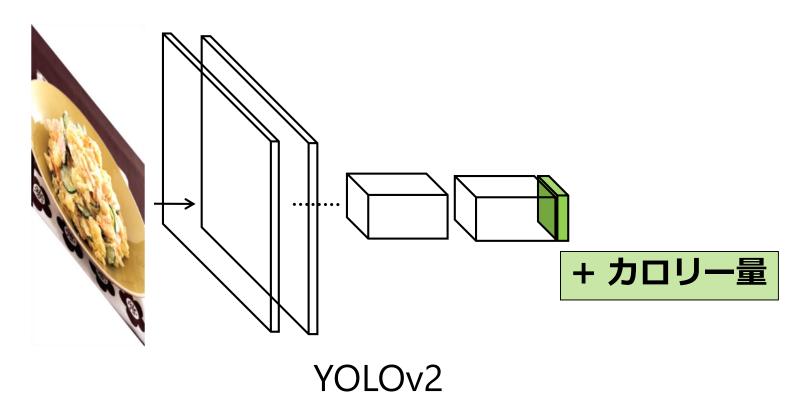
- Faster R-CNNにより「牛乳」 と分類された料理に 関しては134kcalとする
- カロリー量推定評価指標
 - 相対誤差(%): $\frac{|y_i-g_i|}{g_i}$
 - 絶対誤差(kcal): $|y_i g_i|$
 - < 20% (相対誤差)(%):相対誤差20%より小さい推定値の割合

		誤差	< 20% (相対誤 差)(%)	(相対誤
単品料理カロリー量推定[1]	30.2	105.7	43	76
複数料理合計カロリー量推定	21.4	136.8	53.0	85.1

実験:複数料理写真からのカロリー量推定

まとめ

・ 複数料理写真からのカロリー量推定


• Faster R-CNNによる料理検出

・ 複数料理写真からの合計カロリー量推定

今後

・検出とカロリー量推定のMulti-task学習

YOLOv2: J. Redmon, A. Farhadi, YOLO9000: Better, Faster, Stronger, CVPR 2017

