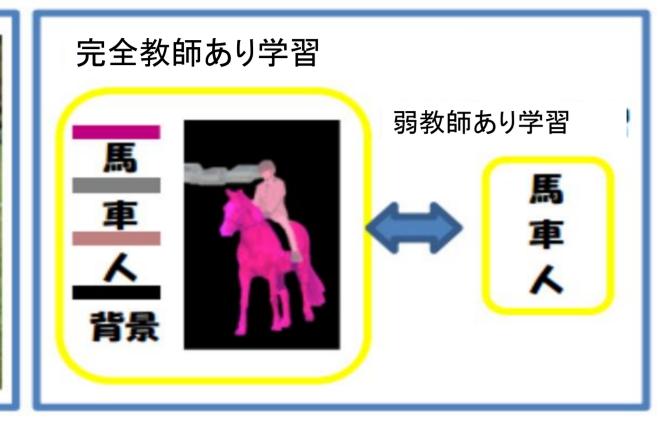
教師情報に含まれるノイズに堅牢な 弱教師あり領域分割手法

下田和、柳井啓司

電気通信大学 大学院情報理工学研究科 総合情報学専攻

研究の目的

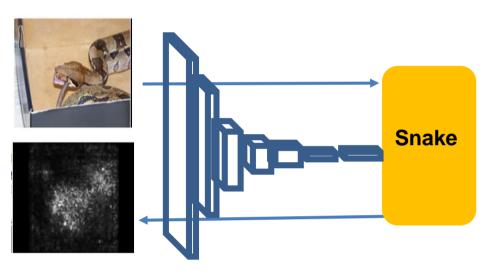
弱教師あり領域分割 画像ラベルのみから学習し物体の領域を 推定

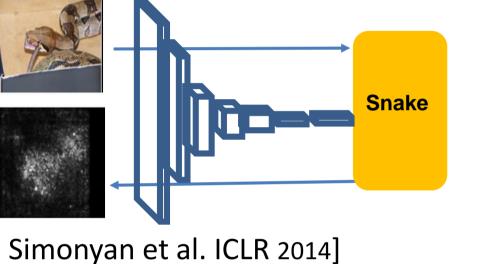


研究の背景

逆伝搬による認識結果の可視化

- -認識結果を可視化し、領域分割
- -学習時のプロセスを活用
- -誤差を逆伝搬すると学習に重要な領域が反応

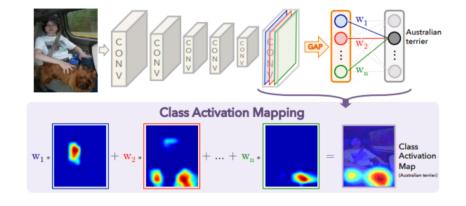




[Shimoda et al. ECCV 2016]

CAMによる認識結果の可視化 -GAPでクラス分類を学習

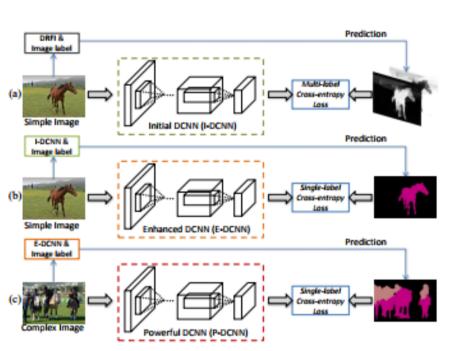
-テスト時にGAPを使わずに Weightをかける

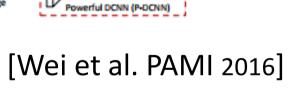


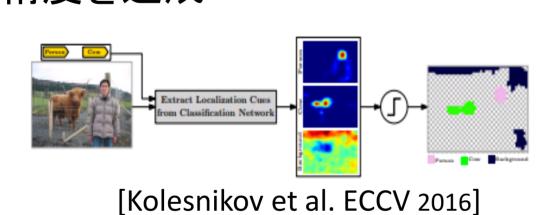
[Zhou et al. CVPR 2016]

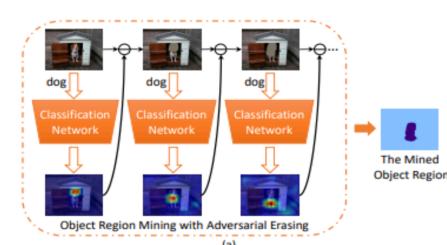
Full supervised modelの学習

- -領域シードを事前に算出
- -完全教師ありのフレームワークで学習
- -弱教師あり領域分割で高精度を達成





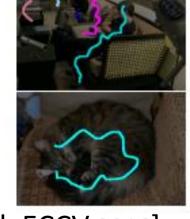


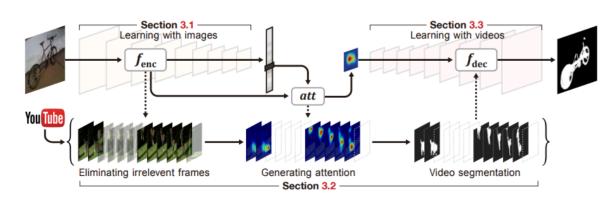


[Wei et al. CVPR 2017]

教師情報の制限の緩和

- -ポイントアノテーション
- -Supervised saliency(物体のマスク、カテゴリ情報なし) -Webビデオの活用

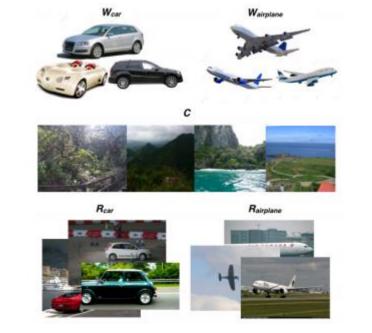


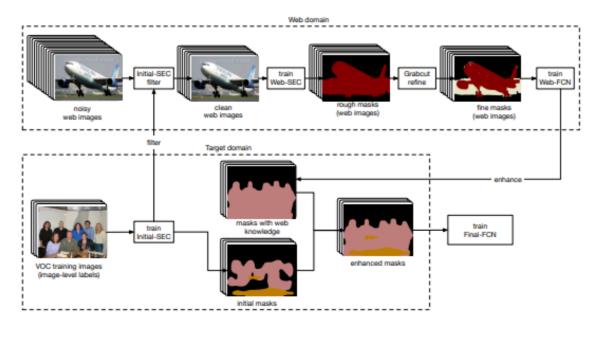


[Hong et al. CVPR 2017]

Webly supervised segmentation

-Web画像を用いて弱教師あり領域分割の精度向上 -Web画像のDomainとScene画像のDomainの違いを利用





[Jin et al. CVPR 2017]

[Shen et al. CVPR 2018]

提案手法のモチベーション

現在の弱教師あり領域分割の課題

- -可視化結果と実際の物体の領域のギャップを埋める
 - -共起の強い物体の領域の認識
- -物体領域の境界の探索
- -ノイズの多い教師情報から学習
 - -少ないサンプルから学習
 - -物体の大きさ、角度、遮蔽など見え方の変化に弱くなる

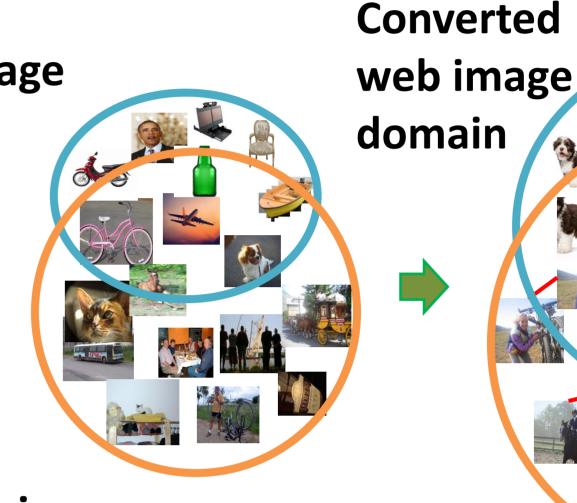
Web画像を用いた教師データの水増し

- -Web画像
 - -検索クエリ->ラベル
- -シングルラベル(Presence)
- -Scene画像(Pascal VOC)
- -マルチラベル (Presence + absence)

-異なるドメインの分布を近づけて 学習に活用したい

- -適切な領域を切り取れば近い分布に -難しいのでランダムに切り取り
- -学習が不安定に->変換前の画像と紐づける

Web image domain



Realistic image domain

Converted realistic image domain

提案手法

Seedの生成

- -Adversarial erasing
- -CAM+オクルージョン+学習+繰り返し
- -CAM+オクルージョン+繰り返しに変更
- -Supervised Saliency (DRFI [Jiang et al. CVPR 2013])
- -Unsupervised saliencyに変更[Zhu et al. CVPR 2014]

大域領域と局所領域の一貫性の学習

- -大域領域 x^g 、局所領域 x^l とする
- -それぞれの推定結果の 共通領域の一貫性を学習
- -Consistency loss

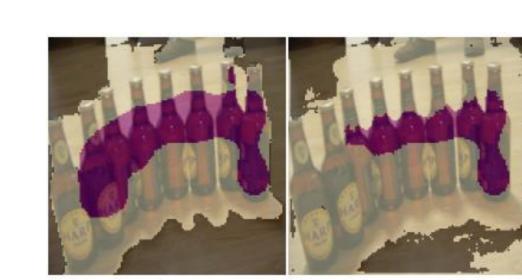
最適化

-Loss = Seed loss + GAP loss + CRF loss + Consistency loss

動的なSeedの評価領域の制限

- -Seedはノイズを多く含んでいる
- -認識結果の確信度を用いて Seedの評価領域を減らす
- -エポックごとに減らす領域を増加

Relaxation Global view CNN Convert view Local view CNN Convert view Prediction | Relaxation



Pascal VOC 2012 dataset Training image 10582枚 Validation 1449枚 Testset 1456枚

Ablation study (val set)

Abiation study (var set)									
Seed loss + gap loss	CRF loss	Consiste- ncy loss	Seedの 修正	MIoU					
✓	_	_	_	45.4					
\checkmark	✓	_	_	46.0					
✓	✓	✓	_	54.4					
√	_	_	✓	38.2					
\checkmark	✓	✓	\checkmark	44.3					
\checkmark	\checkmark	\checkmark	\checkmark	59.2					

Seedの評価領域の削減と 精度の変化 (valset)

作及の及し (Val SCI)								
Rate mloU	0.0	0.1	0.2	0.3	0.4	0.5		
mloU	54.4	3.7	25.9	54.7	51.2	60.3		
Rate mloU	0.6	0.7	0.8	0.9	1.0			
mloU	56.2	59.2	58.1	52.7	3.6			

Pascal VOC 2012 Mean IoU

弱教師あり領域分 割	publish	Val	Test			
追加情報を活用						
Point annotation	ECCV 2016	46.1	-			
Video	CVPR 2017	58.1	58.7			
画像ラベル情報のみ						
Global pooling	ICLR 2015	25.7	24.9			
Ours	ECCV 2016	44.1	45.1			
SEC	ECCV 2016	50.7	51.7			
Adversarial Erasing	CVPR 2017	55.0	55.7			
Iterative mining	CVPR 2018	60.3	61.2			
Affinity Net	CVPR 2018	61.7	63.7			
Web画像を使用						
STC	PAMI 2017	49.8	51.2			
WebS	CVPR2017	52.6	55.3			
Web SEC	CVPR2018	63.0	63.9			
Ours	-	60.3	61.3			
w. l ccc/t-7丁cocothのw. l 正 <i>偽ま</i>						

Web SECは7万6000枚のWeb画像を使用 本手法は6000枚のWeb画像を使用

Ground + CRF loss truth + Consistency loss (mloU 38.2%)